
The RoboCup Soccer Simulator Users
Manual

The RoboCup Soccer Simulator Maintenance Committee

Mar 17, 2023

CONTENTS

1 Introduction 3
1.1 Background . 3
1.2 The Goals of RoboCup . 4
1.3 History . 5
1.4 About This Manual . 9
1.5 Reader’s Guide to the Manual . 10

2 Overview 11
2.1 Getting Started . 11
2.2 The Rules of the Game . 12

3 Getting Started 15
3.1 The Homepage . 15
3.2 Getting and installing the server . 15
3.3 Quick Start . 16
3.4 Full installation . 16
3.5 Using the Simulator . 17
3.6 How to stop the server . 21
3.7 Supported platforms . 21
3.8 Troubleshooting . 22

4 Soccer Server 23
4.1 Objects . 23
4.2 Protocols . 24
4.3 Sensor Models . 29
4.4 Movement Models . 37
4.5 Collision Model . 38
4.6 Action Models . 38
4.7 Heterogeneous Players . 52
4.8 Referee Model . 53
4.9 The Soccer Simulation . 60
4.10 Using Soccerserver . 60

5 Soccer Monitor 69
5.1 Introduction . 69
5.2 Getting started . 69
5.3 Communication from Server to Monitor . 70
5.4 Communication from Monitor to Server . 75
5.5 How to record and playback a game . 76
5.6 Team Graphic . 79

i

5.7 What’s New . 79

6 Soccer Client 83
6.1 Protocols . 83
6.2 How to Create Clients . 87

7 Coach 93
7.1 Introduction . 93
7.2 Distinction Between Trainer and Online Coach . 93
7.3 Trainer . 94
7.4 Commands . 94
7.5 Messages from the Server . 98
7.6 Online Coach . 99
7.7 The Standard Coach Language . 101

8 References and Furter Reading 115
8.1 General Papers . 115
8.2 Doctrial Theses . 115
8.3 Undergraduate and Master’s Theses . 115
8.4 Platforms to start building team upon . 115
8.5 Education-related articles . 115
8.6 Machine Learning . 115
8.7 Decision Making . 115
8.8 Other supporting documents . 115
8.9 Team Descriptions . 115

Bibliography 117

Index 119

ii

The RoboCup Soccer Simulator Users Manual

last update: Mar 17, 2023

CONTENTS 1

The RoboCup Soccer Simulator Users Manual

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

We are in the early days of RoboCup [Kitano95IJCAI], with half a century to go before we can “. . . build a team of robot
soccer players, which can beat a human world cup champion team” [RoboCup97]. The challenge posed by the goal is
enormous and inspires hundreds of researchers yearly throughout the world to engage themselves and their students in
RoboCup. RoboCup has been used as a research challenge in parallel with a usage for educational purposes, and to
stimulate the interest of the public for robotics and artificial intelligence(AI). Each year since 1997, researchers from
different countries have gathered to play the world cup. The event has drawn an increasing amount of interest from the
public, as robotics is still not commonplace.

The intention of this manual1 is to guide the developers of simulated league teams in the beginning steps, and also
serve as a reference manual for the experienced users.

1.1 Background

Mackworth [Mackworth93] introduced the idea of using soccer-playing robots in research. Unfortunately, the idea did
not get the proper response until the idea was further developed and adapted by Kitano, Asada, and Kuniyoshi, when
proposing a Japanese research programme, called Robot J-League2. During the autumn of 1993, several American
researchers took interest in the Robot J-League, and it thereafter changed name to the Robot World Cup Initiative or
RoboCup for short. RoboCup is sometimes referred to as the RoboCup challenge or the RoboCup domain.

In 1995, Kitano et al. [Kitano95IJCAI] proposed the first Robot World Cup Soccer Games and Conferences to take
place in 1997. The aim of RoboCup was to present a new standard problem for AI and robotics, somewhat jokingly
described as the life of AI after Deep Blue3 . RoboCup differs from previous research in AI by focusing on a distributed
solution instead of a centralised solution, and by challenging researchers from not only traditionally AI-related fields,
but also researchers in the areas of robotics, sociology, real-time mission critical systems, etc.

To co-ordinate the efforts of all researchers, the RoboCup Federation was formed. The goal of RoboCup Federation
is to promote RoboCup, for example by annually arranging the world cup tournament. Members of the RoboCup
Federation are all active researchers in the field, and represent a number of universities and major companies. As the
body of researchers is quite large and widespread, local committees are formed to promote RoboCup-related events in
their geographical area.

1 Parts of this chapter is taken directly from [Kummeneje01PhL]
2 The J-League is the professional soccer league in Japan.
3 In reference to Deep Blue and its games with Kasparov, see http://www.chess.ibm.com.

3

http://www.chess.ibm.com

The RoboCup Soccer Simulator Users Manual

1.2 The Goals of RoboCup

The RoboCup Federation has set goals and a timetable for the research. Setting goals and a timetable are means of
pushing the state-of-the-art further, in conjunction with formalised test-beds. In resemblance with John F. Kennedy’s
national goal of “landing a man on the moon and returning him safely to earth” ([4], p. 8276), the main accomplishment
was not to land a man on the moon and returning him safely, but the overall technological advancement. Therefore, the
most important goal of RoboCup is to advance the overall technological level of society, and as a more pragmatic goal
to achieve the following:

By mid-21st century, a team of fully autonomous humanoid robot soccer players shall win the soccer game,
comply with the official rule of the FIFA 4 , against the winner of the most recent World Cup.

There will be several technological advancements, even if the goal of the robotic soccer team is not reached, starting
with Team-Partitioned, Opaque-Transition Reinforcement Learning (TPOT-RL) [Stone98] which has found application
in the domain of packet routing in computer networks. TPOT-RL is a distributed learning method in domains where
“agents have limited information about environmental state transitions” ([Stone98], p. 22).

In most RoboCup leagues, the teams consist of either robots or programs that cooperate in order to defeat the opponent
team. RoboCup Rescue and the commentator exhibition diverge from the other RoboCup leagues. The goal of defeating
an opponent would raise ethical issues in RoboCup Rescue, since we cannot assign comparable utilities to human lives
and buildings. Hence, the focus in RoboCup Rescue is on the co-operative efforts between heterogeneous agents. In
the commentator exhibition, the goal is to observe and comment.

Besides the commentator exhibition and RoboCup Rescue, the main body of the RoboCup challenge consists of several
leagues for soccer playing. However, as this manual is about the simulated league we will only focus on it.

1.2.1 Simulated League

The RoboCup simulator league is based on the RoboCup simulator called the soccer server [Noda97RoboCup97], a
physical soccer simulation system. All games are visualised by displaying the field of the simulator by the soccer
monitor on a computer screen. The soccer server is written to support competition among multiple virtual soccer
players in an uncertain multi-agent environment, with real-time demands as well as semi-structured conditions. One of
the advantages of the soccer server is the abstraction made, which relieves the researchers from having to handle robot
problems such as object recognition [9], communications, and hardware issues, e.g., how to make a robot move. The
abstraction enables researchers to focus on higher level concepts such as cooperation and learning.

Since the soccer server provides a challenging environment, i.e., the intentions of the players cannot mechanically be
deduced, there is a need for a referee when playing a match. The included artificial referee is only partially implemented
and can detect trivial situations, e.g., when a team scores. However, there are several hard-to-detect situations in the
soccer server, e.g., deadlocks, which brings the need for a human referee. All participating teams are also obliged to
play according to a gentlemen’s agreement, e.g., not to use loopholes.

Since the first version of the soccer server was completed in 1995, there have been four world cups and one pre-
world cup event, not to mention all other RoboCup-related events. The 1996 pre-RoboCup event [PreRoboCup96] was
held in Osaka, with only seven entrants in the competition which ended with a Japanese victory by the team Ogalets
from Tokyo University. In Nagoya the following year, the first formal competition was held in conjunction with the
IJCAI’97 conference. The competition had 29 teams participating, and the winner was AT Humboldt [Burkhard97].
The RoboCup world cup of 1998 was played in conjunction with the human world cup in Paris, and the winning team
was CMUnited98 [CMUnited98]. During the world cup, media was heavily covering the event, as it was public in a
museum in the suburbs of Paris. The year after, the world cup was held in conjunction with IJCAI’99 in Stockholm,
and the winners (once again) were CMUnited99 [CMUnited99]. An unchanged version of the champion team must
participate, as a benchmark, in the next world cup. The benchmarking teams have always been able to win their group,
but only in 2000 did the benchmark team advance further than the first game after group play.

4 Chapter 1. Introduction

The RoboCup Soccer Simulator Users Manual

1.2.2 What is the Soccerserver

Soccer Server is a system that enables autonomous agents consisting of programs written in various languages to play
a match of soccer (association football) against each other.

A match is carried out in a client/server style: A server, soccerserver, provides a virtual field and simulates all move-
ments of a ball and players. Each client controls movements of one player. Communication between the server and
each client is done via UDP/IP sockets. Therefore users can use any kind of programing systems that have UDP/IP
facilities.

The soccerserver consists of 2 programs, soccerserver and soccermonitor. Soccer Server is a server program that
simulates movements of a ball and players, communicates with clients, and controls a game according to rules. Soccer-
monitor is a program that displays the virtual field from the soccerserver on the monitor using the X window system.
A number of soccermonitor programs can connect with one soccerserver, so we can display field-windows on multiple
displays.

A client connects with soccerserver by an UDP socket. Using the socket, the client sends commands to control a player
of the client and receives information from sensors of the player. In other words, a client program is a brain of the
player: The client receives visual and auditory sensor information from the server, and sends control-commands to the
server.

Each client can control only one player 56 . So a team consists of the same number of clients as players. Com-
munications between the clients must be done via soccerserver using say and hear protocols. (See section Player
Command Protocol.) One of the purposes of soccerserver is evaluation of multi-agent systems, in which efficiency of
communication between agents is one of the criteria. Users must realize control of multiple clients by such restricted
communication.

1.3 History

In this section we will first describe the history of the soccerserver and thereafter the history of the RoboCup Simulation
League. To end the section we will also describe the history of the manual effort.

1.3.1 History of the Soccer Server

The first, preliminary, original system of soccerserver was written in September of 1993 by Itsuki Noda, ETL. This
system was built as a library module for demonstration of a programming language called MWP, a kind of Prolog
system that has multi-threads and high level program manipulation. The module was a closed system and displayed a
field on a character display, that is VT100.

The first version (version 0) of the client-server style server was written in July of 1994 on a LISP system. The server
shows the field on an X window system, but each player was shown in an alphabet character. It used the TCP/IP protocol
for connections with clients. This LISP version of soccerserver became the original style of the current soccerserver.
Therefore, the current soccerserver uses S-expressions for the protocol between clients and the server.

The LISP version of soccerserver was re-written in C++ in August of 1995 (version 1). This version was announced at
the IJCAI workshop on Entertainment and AI/Alife held in Montreal, Canada, August 1995.

The development of version 2 started January of 1996 in order to provide the official server of preRoboCup-96 held
at Osaka, Japan, November 1996. From this version, the system is divided into two modules, soccerserver and soc-
cerdisplay (currently, soccermonitor). Moreover, the feature of coach mode was introduced into the system. These
two features enabled researchers on machine learning to execute games automatically. Peter Stone at Carnegie Mellon
University joined the decision-making process for the development of the soccerserver at this stage. For example, he
created the configuration files that were used at preRoboCup-96.

1.3. History 5

The RoboCup Soccer Simulator Users Manual

After preRoboCup-96, the development of the official server for the first RoboCup, RoboCup-97 held at Nagoya, Japan,
August 1997, started immediately, and the version 3 was announced in February of 1997. Simon Ch’ng at RMIT joined
decisions of regulations of soccerserver from this stage. The following features were added into the new version:

• logplayer

• information about movement of seen objects in visual information

• capacity of hearing messages

The development of version 4 started after RoboCup-97, and announced November 1997. From this version, the regu-
lations are discussed on the mailing list organized by Gal Kaminka. As a result, many contributers joined the develop-
ment. Version 4 had the following new features:

• more realistic stamina model

• goalie

• handling offside rule

• disabling players for evaluation

• facing direction of players in visual information

• sense body command

Version 4 was used in JapanOpen 98, RoboCup98 and Pacific Rim Series 98.

Version 5 was used in JapanOpen 99, and will also be used in RoboCup99 in Stockholm during the summer of 1999.

In Melbourne 2000, version 6 was used, and for the world cup in 2001 version 7 will be used.

1.3.2 History of the RoboCup Simulation League

The RoboCup simulation league has had 26 main official events: Starting with a preRoboCup96 in 1996 event, from
1997 onward an official world championship tournament was held each year (from RoboCup97 to RoboCup 2021).
Research results have been reported extensively in the proceedings of the workshops and conferences associated with
these competitions. In this section, we focus mainly on the competitions themselves.

preRoboCup96

preRoboCup96 was the first robotic soccer competition of any sort. It was held on November 5–7, 1996 in Osaka, Japan
[5]. In conjunction with the IROS-96 conference, preRoboCup96 was meant as an informal, small-scale competition
to test the RoboCup soccerserver in preparation for RoboCup97. 5 of the 7 entrants were from the Tokyo region. The
other 2 were from Ch’ng at RMIT and Stone and Veloso from CMU. The winning teams were entered by:

1. Ogawara (Tokyo University)

2. Sekine (Tokyo Institute of Technology)

3. Inoue (Waseda University)

4. Stone and Veloso (Carnegie Mellon University)

In this tournament, team strategies were generally quite straightforward. Most of the teams kept players in fixed loca-
tions, only moving them towards the ball when it was nearby.

6 Chapter 1. Introduction

The RoboCup Soccer Simulator Users Manual

RoboCup97

The RoboCup97 simulator competition was the first formal simulated robotic soccer competition. It was held on August
23–29, 1997 in Nagoya, Japan in conjunction with the IJCAI-97 conference [6]. With 29 teams entering from all around
the world, it was a very successful tournament. The winning teams were entered by:

1. Burkhard et al. (Humboldt University)

2. Andou (Tokyo Institute of Technology)

3. Tambe et al. (ISI/University of Southern California)

4. Stone and Veloso (Carnegie Mellon University)

In this competition, the champion team exhibited clearly superior low-level skills. One of its main advantages in this
regard was its ability to kick the ball harder than any other team. Its players did so by kicking the ball around themselves,
continually increasing its velocity so that it ended up moving towards the goal faster than was imagined possible. Since
the soccerserver did not (at that time) enforce a maximum ball speed, a property that was changed immediately after the
competition, the ball could move arbitrarily fast, making it almost impossible to stop. With this advantage at the low-
level behavior level, no team, regardless of how strategically sophisticated, was able to defeat the eventual champion.

At RoboCup97, the RoboCup scientific challenge award was introduced. Its purpose is to recognize scientific research
results regardless of performance in the competitions. The 1997 award went to Sean Luke [10] of the University of
Maryland “for demonstrating the utility of evolutionary approach by co-evolving soccer teams in the simulator league.”

RoboCup98

The second international RoboCup championship, RoboCup-98, was held on July 2–9, 1998 in Paris, France [1]. It
was held in conjunction with the ICMAS-98 conference.

The winning teams were entered by:

1. Stone et al. (Carnegie Mellon University)

2. Burkhard et al. (Humboldt University)

3. Corten and Rondema (University of Amsterdam)

4. Tambe et al. (ISI/University of Southern California)

Unlike in the previous year’s competition, there was no team that exhibited a clear superiority in terms of low-level agent
skills. Games among the top three teams were all quite closely contested with the differences being most noticeable at
the strategic, team levels.

One interesting result at this competition was that the previous year’s champion team competed with minimal modifi-
cations and finished roughly in the middle of the final standings. Thus, there was evidence that as a whole, the field of
entries was much stronger than during the previous year: roughly half the teams could beat the previous champion.

The 1998 scientific challenge award was shared by Electro Technical Laboratory (ETL), Sony Computer Science Lab-
oratories, Inc., and German Research Center for Artificial Intelligence GmbH (DFKI) for “development of fully auto-
matic commentator systems for RoboCup simulator league.”

To encourage the transfer of results from RoboCup to the scientific community at large, RoboCup98 was the first to host
the Multi-Agent Scientific Evaluation Session. 13 different teams participated in the session, in which their adaptability
to loss of team-members was evaluated comparatively. Each team was played against the same fixed opponent (the
1997 winner, AT Humboldt’97) four half-games under official RoboCup rules. The first half-game (phase A) served
as a base-line. In the other three half- games (phases B-D), 3 players were disabled incrementally: A randomly chosen
player, a player chosen by the representative of the fixed opponent to maximize “damage” to the evaluated team, and
the goalie. The idea is that a more adaptive team would be able to respond better to these.

1.3. History 7

The RoboCup Soccer Simulator Users Manual

Very early on, even during the session itself, it became clear that while in fact most participants agreed intuitively with
the evaluation protocol, it wasn’t clear how to quantitatively, or even qualitatively, analyse the data. The most obvious
measure of the goal-difference at the end of each half may not be sufficient: some teams seem to do better with less
players, some do worse. Performance, as measured by the goal-difference, really varied not only from team to team,
but also for the same team between phases. The evaluation methodology itself and analysis of the results became open
research problems in themselves. To facilitate this line of research, the data from the evaluation was made public at:
http://www.isi.edu/~galk/Eval/

RoboCup99

The third international RoboCup championship, RoboCup-99, was held in late July and early August, 1999 in Stock-
holm, Sweden [3]. It was held in conjunction with the IJCAI-99 conference.

RoboCup2000

The fourth international RoboCup championship, RoboCup 2000, was held in early September, 2000 in Melbourne,
Australia [16]. It was held in conjunction with the PRICAI-2000 conference.

RoboCup 2004

The eigth international RoboCup championship, RoboCup 2004, was held in Lisbon, Portugal. It was accompanied by
the RoboCup 2004 Symposium, held at the Instituto Superior Tecnico and was co-located with the 5th IFAC/EURON
International Symposium on Intelligent Autonomous Vehicles (IAV 2004).

The main novelty in the Soccer Simulation League in 2004 was the introduction of the 3D soccer simulator, where
players are spheres in a three-dimensional environment with a full physical model. This sub-competition was the
spawning point for the Soccer Simulation 3D League in later years.

The winning teams in the Soccer Simulation 2D competition, for which 24 teams were qualified, were:

1. STEP (ElectroPult Plant Company, Russia)

2. Brainstormers (University of Osnabrueck, Germany)

3. Mersad (Allameh Helli High School, Iran)

The winning teams in the coach competition were:

1. MRL (Azad University of Qazvin, Iran)

2. FC Portugal (Universities of Porto and Aveiro, Portugal)

3. Caspian (Iran University of Science and Technology, Iran)

The winning teams in the 3D competition were:

1. Aria (Amirkabir University of Technology, Iran)

2. AT-Humboldt (Humboldt University Berlin, Germany)

3. UTUtd 2004 (University of Tehran, Iran)

8 Chapter 1. Introduction

http://www.isi.edu/~galk/Eval/

The RoboCup Soccer Simulator Users Manual

RoboCup 2005

The tenth international RoboCup championship, RoboCup 2005, was held in July 2005 in Osaka, Japan [16]. It was
accompanied by the RoboCup Symposium. Since, for the first time, the 3D sub-league of soccer simulation had its own
tournament, the number of teams that were maximally allowed to qualify for the Soccer Simulation 2D competitions
at RoboCup 2005 was reduced to 16 (though a 17th team was permitted for reasons of the qualifying procedure).

The winning teams in the Soccer Simulation 2D competition were:

1. Brainstormers (University of Osnabrueck, Germany)

2. WrightEagle (University of Science and Technology of China, China)

3. TokyoTech SFC (Tokyo Institute of Technology, Japan)

An interesting observation, quite similar to the related remark for RoboCup98, could be made in this year: Last year’s
champion (STEP, Russia) entered the competition without any modifications made to their team and finished the tour-
nament on rank 4.

1.3.3 History of the Soccer Manual Effort

The first versions of the manual were written by Itsuki Noda, while developing the soccerserver, and around version
3.00 there were several requests on an updated manual, to better correspond to the server as well as enable newcomers
to more easily participate in the RoboCup World Cup Initiative. In the fall of 1998 Peter Stone initiated the Soccer
Manual Effort, over which Johan Kummeneje took responsibility to organize and as a result the Soccer Server Manual
version 4.0 was released on the 1st of November 1998.

In 1999, the manual for the soccerserver version 5.0 was released. Unfortunately the manual lost part of its pace, and
there was no release of the manual for soccerserver version 6.0.

Since 1999, the soccerserver has changed major version to 7 and is continuously developed. Therefore the Soccer
Manual Effort has developed a new version, which resulted in a PDF version of the Soccer Manual (available on
Sourceforge) that has been the main reference document for many years.

In 2009 and 2010 (soccerserver versions 12 and 14), significant changes were introduced to the way the soccerserver
simulates soccer, including a changed tackle model and a sideward dash model to mention just a few. The corresponding
changes of those times were, unfortunately, not incorporated into the existing soccerserver manual, but were reflected
only in the NEWS text file as part of the soccerserver software package.

In 2019, a joint effort was started to migrate the existing Latex-based soccerserver manual to the Github-hosted version
that is based on reStructured text and that you are reading here.

1.4 About This Manual

This manual is the joint effort of the authors from a diverse range of universities and organizations, which build upon
the original work of Itsuki Noda. If there are errors, inconsistencies, or oddities, please notify johank@dsv.su.se or
fruit@uni-koblenz.de with the location of the error and a suggestion of how it should be corrected.

We are always looking for anyone who has an idea on how to improve the manual, as well as proofread or (re)write a
section of the manual. If you have any ideas, or feel that you can contribute with anything to the SoccerServer Manual
Effort. .. please mail johank@dsv.su.se or fruit@uni-koblenz.de.

1.4. About This Manual 9

mailto:johank@dsv.su.se
mailto:fruit@uni-koblenz.de
mailto:johank@dsv.su.se
mailto:fruit@uni-koblenz.de

The RoboCup Soccer Simulator Users Manual

1.5 Reader’s Guide to the Manual

The thesis is written for a wide range of readers, and therefore the chapters are not equally important to all readers. We
shortly describe the remaining chapters to give an overview of the thesis.

Chapter 2 introduces the concepts of the simulated league and will help the newcomer to get to terms with the different
parts.

Chapter 3 helps the beginners to start compiling and running the software.

Chapter 4 describes the soccerserver.

Chapter 5 describes the soccermonitor.

Chapter 6 describes the soccerclient and how to create one.

Chapter 7 describes the coachclient.

Chapter 8 suggests some further reading.

10 Chapter 1. Introduction

CHAPTER

TWO

OVERVIEW

2.1 Getting Started

This section is designed to give you a quick introduction to the main components of the RoboCup simulator. For each
of these components you will find detailed information (i.e. configuration parameters, run-time options, etc.) later on
in this manual.

2.1.1 The Server

The server is a system that enables various teams to compete in a game of soccer. Since the match is carried out in
a client-server style, there are no restrictions as to how teams are built. The only requirement is that the tools used
to develop a team support client-server communication via UDP/IP. This is due to the fact that all communication
between the server and each client is done via UDP/IP sockets. Each client is a separate process and connects to the
server through a specified port. After a player connects to the server, all messages are transferred through this port.
A team can have up to 12 clients, i.e. 11 players (10 fielders + 1 goalie) and a coach. The players send requests to
the server regarding the actions they want to perform (e.g. kick the ball, turn, run, etc.). The server receives those
messages, handles the requests, and updates the environment accordingly. In addition, the server provides all players
with sensory information (e.g. visual data regarding the position of objects on the field, or data about the player’s
ressources like stamina or speed). It is important to mention that the server is a real-time system working with discrete
time intervals (or cycles). Each cycle has a specified duration, and actions that need to be executed in a given cycle,
must arrive at the server during the right interval. Therefore, slow performance of a player that results in missing action
opportunities has a major impact on the performance of the team as a whole. A detailed description of the server can
be found in Chapter Soccer Server.

2.1.2 The Monitor

The Soccer Monitor is a visualisation tool that allows people to see what is happening within the server during a game.
Currently the monitor comes in two flavors, the rcssmonitor and the rcssmonitor_classic. The information
shown on both monitors include the score, team names, and the positions of all the players and the ball. They also
provide simple interfaces to the server. For example, when both teams have connected, the “Kick-Off” button on
the monitor allows a human referee to start the game. The rcssmonitor, which is based on the frameview by
Artur~Merke, extends the functionality of the classic monitor by several features.

• It is possible to zoom into areas of the field. This is especially useful for debugging purposes.

• The current positions and velocities of all players and the ball can be printed to the console at any time.

• A variety of information can be shown on the monitor, e.g. a player’s view cone, stamina or (in the case of
heterogeneous players) player type.

• Players and the ball can be moved around with the mouse.

11

The RoboCup Soccer Simulator Users Manual

As you will discover later on, to run a game on the server, a monitor is not required. However, if needed, a number of
monitors can be connected to the server at the same time (for example if you want to show the same game at different
terminals). For further details on the monitor please have a look at Chapter Soccer Monitor.

2.1.3 The Logplayer

The logplayer can be thought of as a video player. It is a tool that is used to replay matches. When running the server,
certain options can be used that will cause the server to store all the data for a given match on the hard drive. (Pretty
much like pressing the record button on your video). Then, the program rcsslogplayer combined with a monitor
can be used to replay that game as many times as needed. This is quite useful for doing team analysis and discovering
the strong or weak points of a team. Much like a video player, the logplayer is equipped with play, stop, fast forward
and rewind buttons. Also the logplayer allows you to jump to a particular cycle in a game (for example if you only want
to see the goals). Finally the logplayer allows you to edit existing recordings, i.e. you can save interesting scenes from
a match (or several matches) to another logfile and thus create a presentation easily.

The logplayer can be controlled via a small GUI or a command line interface. In addition commands can be read from
a file, which adds limited scripting capabilities to the logplayer.

2.1.4 The Demo Client

Bundled with the RoboCup Soccer Simulator is a program called rcssclient, which implements a very primitive
textbased client for the simulation. The purpose of this program is to give you a first idea of how the whole affair
works.

When rcssclient is started, it connects to the server. You are presented with a simple ncurses-based interface. You
can then enter commands that are executed by the server. Any information that is received by the client will be shown
in a different section of the screen according to its type (visual, sense body or other). By entering commands and see
what happens you can get a first idea of the way things work in the simulation. Even if you are not a newbie any more,
the program is handy for simple tests, e.g. getting a grip on new commands added to the simulation.

2.2 The Rules of the Game

During a game, a number of rules are enforced either by the automated referee within the server, or by a human referee.
The aim of this section is to describe how these rules work, and how they affect the game.

2.2.1 Rules Judged by the Automated Referee

Kick-Off

Just before a kick off (either before a half time starts, or after a goal), all players must be in their own half. To allow for
this to happen, after a goal is scored, the referee suspends the match for an interval of 5 seconds. During this interval,
players can use the move command to teleport to a position within its own side, rather than run to this position, which
is much slower and consumes stamina. If a player remains in the opponent half after the 5-second interval has expired
or tries to teleport there during the interval, the referee moves the player to a random position within their own half.

12 Chapter 2. Overview

The RoboCup Soccer Simulator Users Manual

Goal

When a team scores, the referee performs a number of tasks. Initially, it announces the goal by broadcasting a message
to all players. It also updates the score, moves the ball to the centre mark, and changes the play-mode to kick_off_x
(where x is either left or right). Finally, it suspends the match for 5 seconds allowing players to move back to their own
half (as described above in the “Kick-Off” section).

Out of Field

When the ball goes out of the field, the referee moves the ball to a proper position (a touchline, corner or goal-area)
and changes the play-mode to kick_in, corner_kick, or goal_kick. In the case of a corner kick, the referee places the
ball at (1m, 1m) inside the appropriate corner of the field.

Player Clearance

When the play-mode is kick_off, free_kick, kick_in, or corner_kick, the referee removes all defending players located
within a circle centred on the ball. The radius of this circle is a parameter within the server (normally 9.15 meters).
The removed players are placed on the perimeter of that circle. When the play-mode is offside, all offending players are
moved back to a non-offside position. Offending players in this case are all players in the offside area and all players
inside a circle with radius 9.15 meters from the ball. When the play-mode is goal_kick, all offending players are moved
outside the penalty area. The offending players cannot re-enter the penalty area while the goal kick takes place. The
play-mode changes to play_on immediately after the ball goes outside the penalty area.

Play-Mode Control

When the play-mode is kick_off, free_kick, kick_in, or corner_kick, the referee changes the play-mode to play_on
immediately after the ball starts moving through a kick command.

Offside

A player is marked offside, if it is - in the opponent half of the field, - closer to the opponent goal than at least two
defending players, - closer to the opponent goal than the ball,\ - closer to the ball than 2.5 meters (this can be changed
with the server parameter server::offside_active_area_size).

Backpasses

Just like in real soccer games, the goalie is not allowed to catch a ball that was passed to him by a teammate. If this
happens, the referee calls a back_pass_l or back_pass_r and assigns a free kick to the opposing team. As such a back
pass can only happen within the penalty area, the ball is placed on the corner of the penalty area that is closest to the
position the goalie tried to catch. Note, that it is perfectly legal to pass the ball to the goalie if the goalie does not try
to catch the ball.

2.2. The Rules of the Game 13

The RoboCup Soccer Simulator Users Manual

Free Kick Faults

When taking a free kick, corner kick, goalie free kick, or kick in, a player is not allowed to pass the ball to itself.
If a player kicks the ball again after performing one of those free kicks, the referee calls a free_kick_fault_l or
free_kick_fault_r and the oppsing team is awarded a free_kick.

As a player may have to kick the ball more than once in order to accelerate it to the desired speed, a free kick fault is
only called if the player taking the free kick

1. is the first player to kick the ball again, and

2. the player has moved (= dashed) between the kicks.

So issuing command sequences like kick–kick–dash or kick–turn–kick is perfectly legal. The sequence
kick–dash–kick, on the other hand, results in a free kick fault.

Half-Time and Time-Up

The referee suspends the match when the first or the second half finishes. The default length for each half is 3000
simulation cycles (about 5 minutes). If the match is drawn after the second half, the match is extended. Extra time
continues until a goal is scored. The team that scores the first goal in extra time wins the game. This is also known as
the “golden goal” rule or “sudden death”.

2.2.2 Rules Judged by the Human Referee

Fouls like “obstruction” are difficult to judge automatically because they concern players’ intentions. To resolve such
situations, the server provides an interface for human-intervention. This way, a human-referee can suspend the match
and give free kicks to either of the teams. The following are the guidelines that were agreed prior to the RoboCup 2000
competition, but they have been used since then.

• Surrounding the ball

• Blocking the goal with too many players

• Not putting the ball into play after a given number of cycles. By now this rule is handled by the automatic referee,
as well. If a team fails to put the ball back into play for servr::drop_ball_time cycles, a drop_ball is issued by
the referee. However, if a team repeatedly fails to put the ball into play, the human referee may drop the ball
prematurely.

• Intentionally blocking the movement of other players

• Abusing the goalie catch command (the goalie may not repeatedly kick and catch the ball, as this provides a safe
way to move the ball anywhere within the penalty area).

• Flooding the Server with Messages: A player should not send more than 3 or 4 commands per simulation cycle
to the soccer server. Abuse may be checked if the server is jammed, or upon request after a game.

• Inappropriate Behaviour: If a player is observed to interfere with the match in an inappropriate way, the human-
referee can suspend the match and give a free kick to the opposite team.

14 Chapter 2. Overview

CHAPTER

THREE

GETTING STARTED

This section contains all the information necessary to get the RoboCup Soccer Simulator source files and to install the
software. Since you are reading this manual, you probably already know where to find the RoboCup Soccer Simulator
related software and documentation. But we will tell you just in case. :-)

3.1 The Homepage

The official homepage of the RoboCup Soccer Simulator can be found at https://rcsoccersim.github.io/ . This page
contains (links to) useful information about RoboCup in general and the RoboCup Soccer Simulator.

3.2 Getting and installing the server

The procedure shown was performed on a computer running SuSE 7.3-GNU/Linux 2.4.10-4GB (check your version
with uname -sr) with gcc 2.95.3 and gcc 3.2 (check your version with which g++) but any reasonably up-to-date
installation should work. prompt.

Get tar.gz files for the version you are after from the Simulator’s code repository:

• rcssserver performs the actual simulation.

• rcssmonitor allows you to watch game in progress.

• rcsslogplayer allows you to replay logs (*.rcg files) created by rcssserver.

At the time of this writing (May-1-2021) the latest version is 16.0.0 and will be used in the example below. Please
substitute 16.0.0 for the latest version available.

If you have downloaded rcssserver-*.tar.gz, then first extract the source files by running:

$ tar zxvf rcssserver-16.0.0.tar.gz

directory to rcssserver-16.0.0. This directory contains the following files:

$ cd rcssserver-16.0.0
$ ls
acinclude.m4 compile configure install-sh
Makefile.in README.md aclocal.m4 config.guess
configure.ac ltmain.sh missing src
AUTHORS config.h.in COPYING.LESSER m4
NEWS ylwrap ChangeLog config.sub
depcomp Makefile.am rcssbase

15

https://rcsoccersim.github.io/
https://github.com/rcsoccersim/rcssserver/releases
https://github.com/rcsoccersim/rcssmonitor/releases
https://github.com/rcsoccersim/rcsslogplayer/releases

The RoboCup Soccer Simulator Users Manual

Always read the README file first:

$ more README

The COPYING file contains details about the license under which you may use and modify the software. Please, make
sure you read it in your own time:

$ more COPYING

3.3 Quick Start

From the rcssserver-* directory execute:

$./configure
$ make

This will build the necessary binaries to get you up and running. The monitor and logplayer can be built with same
procedure.

rcssserver-*/src/rcssserver is the binary for the simulator server. The simulator server manages the actual simulation
and communicates with client programs that control the simulated robots. A sample client can be found at rcssserver-
*/src/rcssclient.

To see what is actually happening in the simulator, you will need to start a simulator monitor, which can be found at
rcssmonitor-*/src/rcssmonitor.

To playback games that you have recorded or downloaded, you will need to start the log player, rcsslogplayer-
*/src/rcsslogplayer. The log player will control what part of the game you see, but you will need to start a monitor
(like rcssmonitor) to see the actual playback.

3.4 Full installation

3.4.1 Configuring

Before you can build the RoboCup Soccer Simulator you will need to run the configure script located in the root of the
distribution directory.

The default configuration will set up to install the simulator components in the following locations:

• /usr/local/bin
for the executables

• /usr/local/include
for the headers

• /usr/local/lib
for the libraries

You may need administrator privileges to install the simulator into the default location. This location can be modified by
using configure’s --prefix=DIR and related options. See configure –help for an overview over the available options.

There are a number of features specific to the package. Some of them are enabled by default. If you want to enable a
feature, use the option --enable-FEATURE[=yes].

Disabling a feature can be done by using either --disable-FEATURE or --enable-FEATURE=no.

16 Chapter 3. Getting Started

The RoboCup Soccer Simulator Users Manual

3.4.2 Building

Once you have successfully configured the simulator, simply run make to build the sources.

3.4.3 Installing

When you have completed building the simulator, its components can be installed into their default locations or the loca-
tions specified during configuration by running make install. Depending on where you are installing the simulator,
you may need special permissions.

3.4.4 Uninstalling

The simulator can also be easily removed by entering the distribution directory and running make uninstall. This
will remove all the files that where installed, but not any directories that were created during the installation process.

3.5 Using the Simulator

To start the server either type:

./rcssserver

from the directory containing the executable or:

rcssserver

if you installed the executables in your PATH.

rcssserver will look in your home directory for the configuration files:

• .rcssserver/server.conf

• .rcssserver/player.conf

• .rcssserver/CSVSaver.conf

• .rcssserver-landmark.xml

If .conf files do not exist, they will be created and populated with default values.

You can include additional configuration files by using the include=FILE option to Com{rcssserver}.

You can then see what’s happening in the simulator by using ./rcssmonitor or rcssmonitor as above.

If you installed the executables in your PATH, you can start both the server and the monitor by using the rcsoccer-
sim script which would have also been installed in your PATH. This script will start the server and the monitor and
automatically stop the server when you close the monitor.

In order to actually start a match on the simulation server, the user must connect some clients to the server (maximum
of 11 per side plus coaches). When these clients are ready, the user can click the Kick Off button on the monitor to
start the game. It is likely that you have not yet programmed your own clients, in which case, you can read section ???
for instructions how to set up a whole match with the available teams that other RoboCuppers have contributed.

Also, there is a sample client rcssclient included with every distribution of the server. .. It has either an ncurses
interface or a .. command line interface (CLI) if ncurses is not available, or it it’s .. started with the Com{-nogui}
option.

3.5. Using the Simulator 17

The RoboCup Soccer Simulator Users Manual

Running rcssclient attempts to connect to the server using default parameters (host=localhost, port=6000). Of course,
these server parameters can be changed using the arguments that the server accepts when it is started. When the client
is started, you need to initialise its connection to the server. This is done by manually typing in an init command and
hitting enter. So, to initialise the connection:

(init MyTeam (version 15))

You will notice that one of the two teams is now named “MyTeam” and one of the players that are standing by the
side-line is active. This player corresponds to the client you’ve just initialised. Also, notice the information that the
client writes on the terminal. This is what the client receives from the server.

In the following text (which has line breaks added for clarity), the first eleven lines correspond to the initialisation1 and
the other data is the sensor information that the server sends to this client:

(init MyTeam (version 15))
(init l 2 before_kick_off)
(server_param (catch_ban_cycle 5)(clang_advice_win 1)
(clang_define_win 1)(clang_del_win 1)(clang_info_win 1)
(clang_mess_delay 50)(clang_mess_per_cycle 1)
(clang_meta_win 1)(clang_rule_win 1)(clang_win_size 300)
(coach_port 6001)(connect_wait 300)(drop_ball_time 0)
(freeform_send_period 20)(freeform_wait_period 600)
(game_log_compression 0)(game_log_version 3)
(game_over_wait 100)(goalie_max_moves 2)(half_time -10)
(hear_decay 1)(hear_inc 1)(hear_max 1)(keepaway_start -1)
(kick_off_wait 100)(max_goal_kicks 3)(olcoach_port 6002)
(point_to_ban 5)(point_to_duration 20)(port 6000)
(recv_step 10)(say_coach_cnt_max 128)
(say_coach_msg_size 128)(say_msg_size 10)
(send_step 150)(send_vi_step 100)(sense_body_step 100)
(simulator_step 100)(slow_down_factor 1)(start_goal_l 0)
(start_goal_r 0)(synch_micro_sleep 1)(synch_offset 60)
(tackle_cycles 10)(text_log_compression 0)
(game_log_dir "/home/thoward/data")
(game_log_fixed_name "rcssserver")keepaway_log_dir "./")
(keepaway_log_fixed_name "rcssserver")
(landmark_file "~/.rcssserver-landmark.xml")
(log_date_format "%Y%m%d%H%M-")(team_l_start "")
(team_r_start "")(text_log_dir "/home/thoward/data")
(text_log_fixed_name "rcssserver")(coach 0)
(coach_w_referee 1)(old_coach_hear 0)(wind_none 0)
(wind_random 0)(auto_mode 0)(back_passes 1)
(forbid_kick_off_offside 1)(free_kick_faults 1)
(fullstate_l 0)(fullstate_r 0)(game_log_dated 1)
(game_log_fixed 1)(game_logging 1)(keepaway 0)
(keepaway_log_dated 1)(keepaway_log_fixed 0)
(keepaway_logging 1)(log_times 0)(profile 0)
(proper_goal_kicks 0)(record_messages 0)(send_comms 0)
(synch_mode 0)(team_actuator_noise 0)(text_log_dated 1)
(text_log_fixed 1)(text_logging 1)(use_offside 1)
(verbose 0)(audio_cut_dist 50)(ball_accel_max 2.7)
(ball_decay 0.94)(ball_rand 0.05)(ball_size 0.085)

(continues on next page)

1 The response from the server means that the client plays for the left side, has the number one and the play mode is before_kick_off. The other
lines correspond the the current server parameters and player types.

18 Chapter 3. Getting Started

The RoboCup Soccer Simulator Users Manual

(continued from previous page)

(ball_speed_max 2.7)(ball_weight 0.2)(catch_probability 1)
(catchable_area_l 2)(catchable_area_w 1)(ckick_margin 1)
(control_radius 2)(dash_power_rate 0.006)(effort_dec 0.005)
(effort_dec_thr 0.3)(effort_inc 0.01)(effort_inc_thr 0.6)
(effort_init 0)(effort_min 0.6)(goal_width 14.02)
(inertia_moment 5)(keepaway_length 20)(keepaway_width 20)
(kick_power_rate 0.027)(kick_rand 0)(kick_rand_factor_l 1)
(kick_rand_factor_r 1)(kickable_margin 0.7)(maxmoment 180)
(maxneckang 90)(maxneckmoment 180)(maxpower 100)
(minmoment -180)(minneckang -90)(minneckmoment -180)
(minpower -100)(offside_active_area_size 2.5)
(offside_kick_margin 9.15)(player_accel_max 1)
(player_decay 0.4)(player_rand 0.1)(player_size 0.3)
(player_speed_max 1)(player_weight 60)(prand_factor_l 1)
(prand_factor_r 1)(quantize_step 0.1)(quantize_step_l 0.01)
(recover_dec 0.002)(recover_dec_thr 0.3)(recover_min 0.5)
(slowness_on_top_for_left_team 1)
(slowness_on_top_for_right_team 1)(stamina_inc_max 45)
(stamina_max 4000)(stopped_ball_vel 0.01)
(tackle_back_dist 0.5)(tackle_dist 2.5)(tackle_exponent 6)
(tackle_power_rate 0.027)(tackle_width 1.25)
(visible_angle 90)(visible_distance 3)(wind_ang 0)
(wind_dir 0)(wind_force 0)(wind_rand 0))

(player_param (player_types 7)(pt_max 3)(random_seed -1)
(subs_max 3)(dash_power_rate_delta_max 0)
(dash_power_rate_delta_min 0)
(effort_max_delta_factor -0.002)
(effort_min_delta_factor -0.002)
(extra_stamina_delta_max 100)
(extra_stamina_delta_min 0)
(inertia_moment_delta_factor 25)
(kick_rand_delta_factor 0.5)
(kickable_margin_delta_max 0.2)
(kickable_margin_delta_min 0)
(new_dash_power_rate_delta_max 0.002)
(new_dash_power_rate_delta_min 0)
(new_stamina_inc_max_delta_factor -10000)
(player_decay_delta_max 0.2)
(player_decay_delta_min 0)
(player_size_delta_factor -100)
(player_speed_max_delta_max 0.2)
(player_speed_max_delta_min 0)
(stamina_inc_max_delta_factor 0))

(player_type (id 0)(player_speed_max 1)(stamina_inc_max 45)
(player_decay 0.4)(inertia_moment 5)(dash_power_rate 0.006)
(player_size 0.3)(kickable_margin 0.7)(kick_rand 0)
(extra_stamina 0)(effort_max 1)(effort_min 0.6))

(player_type (id 1)(player_speed_max 1.1956)(stamina_inc_max 30.06)
(player_decay 0.4554)(inertia_moment 6.385)(dash_power_rate 0.007494)
(player_size 0.3)(kickable_margin 0.829)(kick_rand 0.0645)
(extra_stamina 9.4)(effort_max 0.9812)(effort_min 0.5812))

(player_type (id 2)(player_speed_max 1.135)(stamina_inc_max 33.4)

(continues on next page)

3.5. Using the Simulator 19

The RoboCup Soccer Simulator Users Manual

(continued from previous page)

(player_decay 0.4292)(inertia_moment 5.73)(dash_power_rate 0.00716)
(player_size 0.3)(kickable_margin 0.8198)(kick_rand 0.0599)
(extra_stamina 31.3)(effort_max 0.9374)(effort_min 0.5374))

(player_type (id 3)(player_speed_max 1.1964)(stamina_inc_max 31.24)
(player_decay 0.4664)(inertia_moment 6.66)(dash_power_rate 0.007376)
(player_size 0.3)(kickable_margin 0.88)(kick_rand 0.09)
(extra_stamina 47.1)(effort_max 0.9058)(effort_min 0.5058))

(player_type (id 4)(player_speed_max 1.151)(stamina_inc_max 37.8)
(player_decay 0.45)(inertia_moment 6.25)(dash_power_rate 0.00672)
(player_size 0.3)(kickable_margin 0.8838)(kick_rand 0.0919)
(extra_stamina 44.1)(effort_max 0.9118)(effort_min 0.5118))

(player_type (id 5)(player_speed_max 1.1544)(stamina_inc_max 34.68)
(player_decay 0.4352)(inertia_moment 5.88)(dash_power_rate 0.007032)
(player_size 0.3)(kickable_margin 0.8052)(kick_rand 0.0526)
(extra_stamina 47.1)(effort_max 0.9058)(effort_min 0.5058))

(player_type (id 6)(player_speed_max 1.193)(stamina_inc_max 36.7)
(player_decay 0.4738)(inertia_moment 6.845)(dash_power_rate 0.00683)
(player_size 0.3)(kickable_margin 0.885)(kick_rand 0.0925)
(extra_stamina 92)(effort_max 0.816)(effort_min 0.416))

(sense_body 0 (view_mode high normal) (stamina 4000 1) (speed 0 0)
(head_angle 0) (kick 0) (dash 0) (turn 0) (say 0) (turn_neck 0)
(catch 0) (move 0) (change_view 0) (arm (movable 0) (expires 0)
(target 0 0) (count 0)) (focus (target none) (count 0)) (tackle
(expires 0) (count 0)))

(see 0 ((f c t) 6.7 27 0 0) ((f r t) 58.6 3) ((f g r b) 73 37)
((g r) 69.4 32) ((f g r t) 66 27) ((f p r c) 55.7 41)
((f p r t) 45.2 22) ((f t 0) 6.3 -18 0 0)
((f t r 10) 16.1 -7 0 0) ((f t r 20) 26 -4 0 0)
((f t r 30) 36.2 -3) ((f t r 40) 46.1 -2)
((f t r 50) 56.3 -2) ((f r 0) 73.7 30) ((f r t 10) 68.7 23)
((f r t 20) 66 15) ((f r t 30) 64.1 6) ((f r b 10) 79 37)
((f r b 20) 85.6 42))

(sense_body 0 (view_mode high normal) (stamina 4000 1) (speed 0 0)
(head_angle 0) (kick 0) (dash 0) (turn 0) (say 0) (turn_neck 0)
(catch 0) (move 0) (change_view 0) (arm (movable 0) (expires 0)
(target 0 0) (count 0)) (focus (target none) (count 0)) (tackle
(expires 0) (count 0)))

(see 0 ((f c t) 6.7 27 0 0) ((f r t) 58.6 3) ((f g r b) 73 37)
((g r) 69.4 32) ((f g r t) 66 27) ((f p r c) 55.7 41)
((f p r t) 45.2 22) ((f t 0) 6.3 -18 0 0)
((f t r 10) 16.1 -7 0 0) ((f t r 20) 26 -4 0 0)
((f t r 30) 36.2 -3) ((f t r 40) 46.1 -2)
((f t r 50) 56.3 -2) ((f r 0) 73.7 30) ((f r t 10) 68.7 23)
((f r t 20) 66 15) ((f r t 30) 64.1 6) ((f r b 10) 79 37)
((f r b 20) 85.6 42))

...

You can still type commands (such as (move 0 0) or (turn 45)) that the player will then send to the server. You
should be able to see the result of these commands on the monitor window.

20 Chapter 3. Getting Started

The RoboCup Soccer Simulator Users Manual

3.6 How to stop the server

The correct procedure for stopping the server is:

1. Stop all clients (players)

2. Stop all monitors by clicking on the quit button

3. ctrl-c at the terminal window where you started the server in order to terminate it

If you follow this procedure, you will not only stop all visible running processes but also make sure that all those
processes that may be running in the background (such as the server) are also stopped. The problem that arises when
you don’t properly shut down the server is that you may not be able to start another process unless you start it with
different parameters.

Also, if you don’t stop the simulator with a ctrl-c, then the logfiles will no be closed properly (only important if you are
using compressed logging) and they will not be renamed correctly.

NOTE: It is sometimes useful and convenient to terminate processes using their name. Using the kill operating system
command involves finding the process number of the process you want to stop using the ps command. A simpler
way to eradicate all processes that have a specific name is by means of the killall command, for example: killall
rcssserver is sufficient to kill all processes with the name rcssserver.

3.7 Supported platforms

The Soccer Server supports quite a few unix style platforms but we haven’t actually compiled a list. The simulator
(grouped by version numbers) is known to work on the following platforms2:

• 9.2.2

– SuSE 7.3 with gcc 2.95.3 or 3.2 (Tom Howard)

– Windows 2000 with Cygwin with gcc 2.95.3 (Tom Howard)

– SuSE 8.1 with gcc 3.2 (Jan Murray)

– Debian 3.0 (woody) with gcc 2.95.4 (Jan Murray)

– SuSE 7.0 Linux with gcc 2.95.2 (Kernel 2.4.16) (Goetz Schwandtner)

• 9.1.5

– SuSE 8.1 with gcc 3.2 (Jan Murray)

– Debian 3.0 (woody) with gcc 2.95.4 (Jan Murray)

– SuSE 7.3 with gcc 2.95.3 or 3.2 (Tom Howard)

– Windows 2000 with Cygwin with gcc 2.95.3 (Tom Howard)

If you have a platform not listed above for a particular simulator version and you have managed to get the simulator
running on it, please let us know at <sserver-admin@lists.sf.net>.

2 The names listed are the names of the people who have verified the platform.

3.6. How to stop the server 21

mailto:sserver-admin@lists.sf.net

The RoboCup Soccer Simulator Users Manual

3.8 Troubleshooting

In this section we list known problems and try to give some solutions or at least point you in the right direction.

If you run into any errors in configuring, building or running the simulator, which are not reported here please submit
a bug report via the RoboCup Soccer Simulator website, https://rcsoccersim.github.io/, especially if you can provide a
patch or hint to the solution of the problem.

Last update: Mar 17, 2023

22 Chapter 3. Getting Started

https://rcsoccersim.github.io/

CHAPTER

FOUR

SOCCER SERVER

4.1 Objects

���������
	��
�
������
��������	

� �
���
�������
���

� ����������	��
����������
���
������
��������	 ���
!��
	�"#�
���������
	��
�����
!#�
	�"��
�
$��
������%
�
������

&'���#��(��
�)� �*�
���

+����
(����)� �*�
��� ,#��	��
$����
�-������	 (���	��.�����

&'�
�/
�

���
�/
�
������

01�
(�(
���
�
�
�
�����
2 	��-3��#��4��	 2 �����

�������
���#����
�������#	
3��
�
����������
�������#	
	��
�
/���������
��������	

56(������

Fig. 4.1: UML diagram of the objects in the simulation

23

The RoboCup Soccer Simulator Users Manual

4.2 Protocols

4.2.1 Player Command Protocol

Connecting, reconnecting, and disconnecting

From player to server From server to client

(init TeamName [(version VerNum)] [(goalie)])
TeamName ::= [+-_a-zA-Z0-9]+

VerNum ::= the protocol version (e.g. 15)

(init Side Unum PlayMode)
Side ::= l | r
Unum ::= 1~11

PlayMode ::= one of play modes
(error no_more_team_or_playe_or_goalie)

(reconnect TeamName Unum)
TeamName := [+-_a-zA-Z0-9]+

(error Side PlayMode)
Side ::= l | r
Unum ::= 1~11

PlayMode ::= one of play modes
(error reconnect)

(bye)

If your client connects or reconnects sucessfully with a protocol version >= 7.0, the server will additionally send follow-
ing messages: server_param (a message containing the server parameters), player_param (a message containing
the player parameters) and player_type (a message containing the player types). Finally, the player will receive a
message on changed players (see Sec. Heterogeneous Players).

24 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

Initial Settings

From player to server From server to player

(compression Level)
Level ::= zlib compression level [0,9]

or negative number

(ok compression Level)
(warning compression_unsupported)

(clang (ver MinVer MaxVer))
MinVer ::= integer
MaxVer ::= integer

(ok clang (ver MinVer MaxVer))

(ear (OnOff [Team] [Type]))
OnOff ::= on | off
Team ::= our | opp |

left | right |
l | r |
TeamName

no response if succeeded
(error no team with name TeamName)

(synch_see) (ok synch_see)

4.2. Protocols 25

The RoboCup Soccer Simulator Users Manual

Player Control

From player to server Only once per cycle

(turn Moment)
Moment ::= minmoment ~ maxmoment degrees

Yes

(dash Power [Direction])
Power ::= min_dash_power ~
max_dash_power
Direction ::= min_dash_angle ~
max_dash_angle degrees

Note: backward dash (negative power) consumes
double stamina.

Yes

(kick Power Direction)
Power ::= minpower ~ maxpower
Direction ::= minmoment ~ maxmoment
degrees

Yes

(tackle PowerOrAngle [Foul])
PowerOrAngle ::= minmoment ~ maxmoment
degrees : if client version >= 12
PowerOrAngle ::= -max_back_tackle_power ~
max_tackle_power : if client version < 12
Foul ::= true | false | on | off

Yes

(catch Direction)
Direction ::= minmoment ~ maxmoment
degrees

Yes

(move X Y)
X ::= real number
Y ::= real number

Yes

(change_view [Width] Quality)
Width ::= narrow | normal | wide
Quality ::= high | low

No

(say “Message”)
Message ::= [-0-9a-zA-Z ().+*/?<>_]*

No

(pointto Distance Direction)
(pointto Off)

Distance ::= real number
Direction ::= real number degree
Off ::= false | off

No

(attentionto Team Unum)
(attentionto Off)

Team ::= our | opp |
left | right |
l | r |
TeamName

Unum ::= integer
Off ::= false | off

No

(done) Yes

26 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

Others

From player to server From server to player
(sense_body) sense_body message
(score)

(score Time Our Opp)
Time ::= simulation cycle of rcssserver
Our ::= sender’s team score
Opp ::= opponent team score

The server may respond to the above commands with the errors: (error unknown command) or (error illegal command
form)

4.2.2 Player Sensor Protocol

The following table shows the protocol for client version 14 or later.

4.2. Protocols 27

The RoboCup Soccer Simulator Users Manual

From server to player

(hear Time Sender “Message”)
(hear Time OnlineCoach CoachLanguageMessage)

Time ::= simulation cycle of rcssserver
Sender ::= online_coach_left | online_coach_right | coach | referee | self | Direction
Direction ::= -180 ~ 180 degrees
Message ::= string
OnlineCoach ::= online_coach_left | online_coach_right
CoachLanguageMessage ::= see the standard coach language section

(see Time ObjInfo+)
Time ::= simulation cycle of rcssserver
ObjInfo ::=

(ObjName Distance Direction DistChange DirChange BodyFacingDir HeadFacingDir [PointDir] [t]
[k]])
| (ObjName Distance Direction DistChange DirChange [PointDir] [{t|k}])
| (ObjName Distance Direction [t] [k])
| (ObjName Diretion)

ObjName ::= (p [”TeamName” [UniformNumber [goalie]]])
| (b)
| (g {l|r})
| (f c)
| (f {l|c|r} {t|b})
| (f p {l|r} {t|c|b})
| (f g {l|r} {t|b})
| (f {l|r|t|b} 0)
| (f {t|b} {l|r} {10|20|30|40|50})
| (f {l|r} {t|b} {10|20|30})
| (l {l|r|t|b} 0)
| (P)
| (B)
| (G)
| (F)

Distance ::= positive real number
Direction ::= -180 ~ 180 degrees
DistChange ::= real number
DirChange ::= real number
BodyFacingDir ::= -180 ~ 180 degrees
HeadFacingDir ::= -180 ~ 180 degrees
PointDir ::= -180 ~ 180 degrees
TeamName ::= string
UniformNumber ::= 1 ~ 11

(sense_body Time
(view_mode {high|low} {narrow|normal|wide})
(stamina Stamina Effort Capacity)
(speed AmountOfSpeed DirectionOfSpeed)
(head_angle HeadAngle)
(kick KickCount)
(dash DashCount)
(turn TurnCount)
(say SayCount)
(turn_neck TurnNeckCount)
(catch CatchCount)
(move MoveCount)
(change_view ChangeViewCount)
(arm (movable MovableCycles) (expires ExpireCycles) (count PointtoCount))
(focus (target {none|{l|r} Unum}) (count AttentiontoCount))
(tackle (expires ExpireCycles) (count TackleCount))
(collision {none|[(ball)] [(player)] [(post)]})
(foul (charged FoulCycles) (card {red|yellow|none})))

(fullstate Time
(pmode {goalie_catch_ball_{l|r}|*PlayMode*})
(vmode {high|low} {narrow|normal|wide})
(count KickCount DashCount TurnCount CatchCount MoveCount TurnNeckCount ChangeViewCount
SayCount)
(arm (movable MovableCycles) (expires ExpireCycles)) (target Distance Direction) (count PointtoCount)
(score Time Our Opp)
((b) X Y VelX VelY)
Players+)

Players ::= ((p {l|r} UniformNumber [g] PlayerType) X Y VelX VelY BodyDir NeckDir [PointtoDist
PointtoDir] (stamina Stamina Effort Recovery Capacity) [k|t|f] [r|y]))

28 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

4.3 Sensor Models

A RoboCup agent has three different sensors (and one special sensor). The aural sensor detects messages sent by
the referee, the coaches and the other players. The visual sensor detects visual information about the field, like the
distance and direction to objects in the player’s current field of view. The visual sensor also works as a proximity
sensor by “seeing” objects that are close, but behind the player. The body sensor detects the current “physical” status
of the player, like its stamina, speed and neck angle. Together the sensors give the agent quite a good picture of the
environment.

4.3.1 Aural Sensor Model

Aural sensor messages are sent when a client or a coach sends a say command. The calls from the referee is also
received as aural messages. All messages are received immediately.

The format of the aural sensor message from the soccer server is:

(hear Time Sender ‘’Message”)

• Time indicates the current time.

• Sender is the relative direction to the sender if it is another player, otherwise it is one of the following:

– self: when the sender is yourself.

– referee: when the sender is the referee.

– online_coach_left or online_coach_right: when the sender is one of the online coaches.

• Message is the message. The maximum length is server::say_msg_size bytes. The possible messages from the
referee are described in Section Play Modes and referee messages.

The server parameters that affects the aural sensor are described in Table 4.1.

Table 4.1: Parameters for the aural sensor.
Parameter in server.conf Value
audio_cut_dist 50.0
hear_max 1
hear_inc 1
hear_decay 1

Capacity of the Aural Sensor

A player can only hear a message if the player’s hear capacity is at least server::hear_decay, since the hear capacity
of the player is decreased by that number when a message is heard. Every cycle the hear capacity is increased with
server::hear_inc. The maximum hear capacity is server::hear_max. To avoid a team from making the other team’s
communication useless by overloading the channel the players have separate hear capacities for each team. With the
current server.conf file this means that a player can hear at most one message from each team every second simulation
cycle.

If more messages arrive at the same time than the player can hear, the messages actually heard are chosen randomly.
This rule does not include messages from the referee, or messages from oneself. From rcssserver 8.04, players can
send attentionto commands to focus their attention on a particular player.

4.3. Sensor Models 29

The RoboCup Soccer Simulator Users Manual

Focus

If the player focuses on player A from team T (AKA pTA), the player will hear one message selected randomly from
the say messages issued by pTA in the previous cycle. If pTA did not issue any say commands, the player will hear one
message selected randomly from all the say messages issued by players in team T. At the same time, the player will
hear one message selected randomly from the other team. If attentionto is off (default) the player will hear one message
from each team selected randomly from the messages available.

The way to focus is using attentionto commands. See Attentionto Model in detail.

Range of Communication

A message said by a player is transmitted only to players within server::audio_cut_dist meters from that player. For
example, a defender, who may be near his own goal, can hear a message from his goal-keeper but a striker who is near
the opponent goal can not hear the message. Messages from the referee can be heard by all players.

Aural Sensor Example

This example should show which messages get through and how to calculated the hear capacity.

Example: Each coach sends a message every cycle. The referee send a message every cycle. The four players in the
example all send a message every cycle. Show which messages gets through during 10 cycles (6 might be enough).

4.3.2 Vision Sensor Model

The visual sensor reports the objects currently seen by the player. The information is automatically sent to the player
every server::sense_step, currently 150, milli-seconds, in the default setting. If players use the synchronous mode, the
frequency of the visual information is synchronized with the simulation step. The simulation parameters related to the
visual information are listed in Table 4.2 and Table 4.3.

Visual information arrives from the server in the following basic format:

(see ObjName Distance Direction DistChng DirChng BodyDir HeadDir)

Distance, Direction, DistChng and DirChng are calculated in the following way:

𝑝𝑟𝑥 = 𝑝𝑥𝑡 − 𝑝𝑥𝑜

𝑝𝑟𝑦 = 𝑝𝑦𝑡 − 𝑝𝑦𝑜

𝑣𝑟𝑥 = 𝑣𝑥𝑡 − 𝑣𝑥𝑜

𝑣𝑟𝑦 = 𝑣𝑦𝑡 − 𝑣𝑦𝑜

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
√︁
𝑝2𝑟𝑥 + 𝑝2𝑟𝑦

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = arctan (𝑝𝑟𝑦/𝑝𝑟𝑥) − 𝑎𝑜

𝑒𝑟𝑥 = 𝑝𝑟𝑥/𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑒𝑟𝑦 = 𝑝𝑟𝑦/𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐷𝑖𝑠𝑡𝐶ℎ𝑛𝑔 = (𝑣𝑟𝑥 * 𝑒𝑟𝑥) + (𝑣𝑟𝑦 * 𝑒𝑟𝑦)

𝐷𝑖𝑟𝐶ℎ𝑛𝑔 = [(−(𝑣𝑟𝑥 * 𝑒𝑟𝑦) + (𝑣𝑟𝑦 * 𝑒𝑟𝑥))/𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒] * (180/𝜋)

𝐵𝑜𝑑𝑦𝐷𝑖𝑟 = 𝑃𝑙𝑎𝑦𝑒𝑟𝐵𝑜𝑑𝑦𝐷𝑖𝑟 −𝐴𝑔𝑒𝑛𝑡𝐵𝑜𝑑𝑦𝐷𝑖𝑟 −𝐴𝑔𝑒𝑛𝑡𝐻𝑒𝑎𝑑𝐷𝑖𝑟

𝐻𝑒𝑎𝑑𝐷𝑖𝑟 = 𝑃𝑙𝑎𝑦𝑒𝑟𝐻𝑒𝑎𝑑𝐷𝑖𝑟 −𝐴𝑔𝑒𝑛𝑡𝐵𝑜𝑑𝑦𝐷𝑖𝑟 −𝐴𝑔𝑒𝑛𝑡𝐻𝑒𝑎𝑑𝐷𝑖𝑟

where (𝑝𝑥𝑡, 𝑝𝑦𝑡) is the absolute position of the target object, (𝑝𝑥𝑜, 𝑝𝑦𝑜) is the absolute position of the sensing player,
(𝑣𝑥𝑡, 𝑣𝑦𝑡) is the absolute velocity of the target object, (𝑣𝑥𝑜, 𝑣𝑦𝑜) is the absolute velocity of the sensing player, and 𝑎𝑜 is

30 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

the absolute direction the sensing player is facing. The absolute facing direction of a player is the sum of the BodyDir
and the HeadDir of that player. In addition to it, (𝑝𝑟𝑥, 𝑝𝑟𝑦) and (𝑣𝑟𝑥, 𝑣𝑟𝑦) are respectively the relative position and
the relative velocity of the target, and (𝑒𝑟𝑥, 𝑒𝑟𝑦) is the unit vector that is parallel to the vector of the relative position.
BodyDir and HeadDir are only included if the observed object is a player, and is the body and head directions of the
observed player relative to the body and head directions of the observing player. Thus, if both players have their bodies
turned in the same direction, then BodyDir would be 0. The same goes for HeadDir.

The (goal r) object is interpreted as the center of the right hand side goalline. (f c) is a virtual flag at the center of the
field. (f l b) is the flag at the lower left of the field. (f p l b) is a virtual flag at the lower right corner of the penalty box
on the left side of the field. (f g l b) is a virtual flag marking the right goalpost on the left goal. The remaining types of
flags are all located 5 meters outside the playing field. For example, (f t l 20) is 5 meters from the top sideline and 20
meters left from the center line. In the same way, (f r b 10) is 5 meters right of the right sideline and 10 meters below
the center of the right goal. Also, (f b 0) is 5 meters below the midpoint of the bottom sideline.

In the case of (l . . .), Distance is the distance to the point where the center line of the player’s view crosses the line,
and Direction is the direction of the line.

Currently there are 55 flags (the goals counts as flags) and 4 lines to be seen. All of the flags and lines are shown in
Fig. 4.2.

In protocol versions 13+, when a player’s team is visible, their tackling and kicking state is also visible via t and k. If
the player is tackling, t is present. If they are kicking, k is present instead. If an observed player is tackling, the kicking
flag is always overwritten by the tackle flag. The kicking state is visible the cycle directly after kicking.

Asynchronous mode and Synchronous mode

There are two modes available for all players: asynchronous mode and synchronous mode. The asynchronous mode
functions exactly like the default time step in version 11 or older. In server versions 17 and below, asynchronous mode
is still the default mode for all players, including versions 12 to 17.

In server versions 17 and below, asynchronous mode is the default mode for all players, including versions 12 to 17.
If players wish to switch to synchronous mode, they can do so by using the “(synch_see)” command. Once they have
switched to synchronous mode, they cannot return to asynchronous mode. Additionally, players using version 11 or
older can also use the “(synch_see)” command to access synchronous mode.

In server versions 18 and above, players using version 18 are required to use synchronous mode. However, players
using older versions can still switch to synchronous mode by using the “(synch_see)” command to change the default
view mode.

Range of View

The visible sector of a player is dependant on several factors. First of all we have the server parameters
server::sense_step and server::visible_angle which determines the basic time step between visual information and
how many degrees the player’s normal view cone is. The default values in the asynchronous mode are 150 milli-seconds
and 90 degrees. If players use the synchronous mode, the frequency of the visual information is synchronized with the
simulation step. See the next section in detail.

The player can also influence the frequency and quality of the information by changing ViewWidth and ViewQuality.

To calculate the current view frequency and view angle of the agent use equations (4.1) and (4.2).

𝑣𝑖𝑒𝑤_𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑠𝑒𝑛𝑠𝑒_𝑠𝑡𝑒𝑝 * 𝑣𝑖𝑒𝑤_𝑞𝑢𝑎𝑙𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟 * 𝑣𝑖𝑒𝑤_𝑤𝑖𝑑𝑡ℎ_𝑓𝑎𝑐𝑡𝑜𝑟 (4.1)

where view_quality_factor is 1 if ViewQuality is high and 0.5 if ViewQuality is low; view_width_factor is 2 if
ViewWidth is narrow, 1 if ViewWidth is normal, and 0.5 if ViewWidth is wide.

𝑣𝑖𝑒𝑤_𝑎𝑛𝑔𝑙𝑒 = 𝑣𝑖𝑠𝑖𝑏𝑙𝑒_𝑎𝑛𝑔𝑙𝑒 * 𝑣𝑖𝑒𝑤_𝑤𝑖𝑑𝑡ℎ_𝑓𝑎𝑐𝑡𝑜𝑟 (4.2)

4.3. Sensor Models 31

The RoboCup Soccer Simulator Users Manual

(f
la

g
b

l 5
0)

(f
la

g
l t

 3
0)

(f
la

g
l t

 1
0)

(f
la

g
l 0

)

(f
la

g
l b

 1
0)

(f
la

g
l b

 3
0)

(f
la

g
l t

 2
0)

(f
la

g
l b

 2
0)

(f
la

g
b

l 2
0)

(f
la

g
b

l 4
0)

(f
la

g
b

l 1
0)

(f
la

g
b

r
10

)
(f

la
g

b
r

30
)(f

la
g

b
r

40
) (f

la
g

b
r

50
)

(f
la

g
b

l 3
0)

(f
la

g
b

r
20

)

(f
la

g
b

0)

(g
oa

l l
)

(f
la

g
g

l b
)

(f
la

g
g

l t
)

(f
la

g
p

l b
)

(f
la

g
p

l c
)

(f
la

g
p

l t
)

(f
la

g
c

b)

(f
la

g
c)

(f
la

g
l b

)

(f
la

g
l t

)
(f

la
g

r
t)

(f
la

g
r

b)

(f
la

g
c

t)

(f
la

g
p

r
t)

(f
la

g
p

r
c)

(f
la

g
p

r
b)

(g
oa

l r
)

(f
la

g
g

r
t)

(f
la

g
g

r
b)

(l
in

e
l)

(l
in

e
t)

(l
in

e
r)

(l
in

e
b)

(f
la

g
r

0)

(f
la

g
r

t 1
0)

(f
la

g
r

t 2
0)

(f
la

g
r

t 3
0)

(f
la

g
r

b
10

)

(f
la

g
r

b
20

)

(f
la

g
r

b
30

)

(f
la

g
t l

 5
0)

(f
la

g
t l

 4
0)

(f
la

g
t l

 3
0)

(f
la

g
t l

 2
0)

(f
la

g
t l

 1
0)

(f
la

g
t r

 1
0)

(f
la

g
t r

 2
0)

(f
la

g
t r

 3
0)

(f
la

g
t r

 4
0)

(f
la

g
t r

 5
0)

(f
la

g
t 0

)

Ph
ys

ic
al

 b
ou

nd
ar

y

Fig. 4.2: The flags and lines in the simulation.

32 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

where view_width_factor is 0.5 if ViewWidth is narrow, 1 if ViewWidth is normal, and 2 if ViewWidth is wide.

The player can also “see” an object if it’s within server::visible_distance meters of the player. If the objects is within
this distance but not in the view cone then the player can know only the type of the object (ball, player, goal or flag),
but not the exact name of the object. Moreover, in this case, the capitalized name, that is “B”, “P”, “G” and “F”, is
used as the name of the object rather than “b”, “p”, “g” and “f”.

The following example and Fig. 4.3 are taken from [Stone98].

The meaning of the view_angle parameter is illustrated in Fig. 4.3. In this figure, the viewing agent is the one shown
as two semi-circles. The light semi-circle is its front. The black circles represent objects in the world. Only objects
within 𝑣𝑖𝑒𝑤_𝑎𝑛𝑔𝑙𝑒∘/2, and those within visible_distance of the viewing agent can be seen. Thus, objects b and g are
not visible; all of the rest are.

As object f is directly in front of the viewing agent, its angle would be reported as 0 degrees. Object e would be reported
as being roughly −40∘, while object d is at roughly 20∘.

Also illustrated in Fig. 4.3, the amount of information describing a player varies with how far away the player is. For
nearby players, both the team and the uniform number of the player are reported. However, as distance increases, first
the likelihood that the uniform number is visible decreases, and then even the team name may not be visible. It is
assumed in the server that unum_far_length ≤ unum_too_far_length ≤ team_far_length ≤ team_too_far_length.
Let the player’s distance be dist. Then

• If dist ≤ unum_far_length, then both uniform number and team name are visible.

• If unum_far_length < dist < unum_too_far_length, then the team name is always visible, but the probability
that the uniform number is visible decreases linearly from 1 to 0 as dist increases.

• If dist ≥ unum_too_far_length, then the uniform number is not visible.

• If dist :math`leq` team_far_length, then the team name is visible.

• If team_far_length < dist < team_too_far_length, then the probability that the team name is visible decreases
linearly from 1 to 0 as dist increases.

• If dist ≥ team_too_far_length, then the team name is not visible.

For example, in Fig. 4.3, assume that all of the labeled circles are players. Then player c would be identified by both
team name and uniform number; player d by team name, and with about a 50% chance, uniform number; player e
with about a 25% chance, just by team name, otherwise with neither; and player f would be identified simply as an
anonymous player.

Table 4.2: Parameters for the visual sensors in server.conf.
Parameter in server.conf Value
server::sense_step 150
server::visible_angle 90.0
server::visible_distance 3.0
server::quantize_step 0.1
server::quantize_step_l 0.01

4.3. Sensor Models 33

The RoboCup Soccer Simulator Users Manual

d

b
e

c
a

g

f

fi
el

d_
le

ng
th

fi
el

d_
w

id
th

vi
si

bl
e_

di
st

an
ce vi
ew

_a
ng

le

un
um

_f
ar

_l
en

gt
h

un
um

_t
oo

_f
ar

_l
en

gt
h

te
am

_f
ar

_l
en

gt
h

te
am

_t
oo

_f
ar

_l
en

gt
h

C
lie

nt
 w

ho
se

 v
is

io
n

pe
rs

pe
ct

iv
e

is
 b

ei
ng

 il
lu

st
ra

te
d

Fig. 4.3: The visible range of an individual agent in the soccer server. The viewing agent is the one shown as two
semi-circles. The light semi-circle is its front. The black circles represent objects in the world. Only objects within
server::view_angle/2, and those within server::visible_distance of the viewing agent can be seen. unum_far_length,
unum_too_far_length, team_far_length, and team_too_far_length affect the amount of precision with which a
player’s identity is given. Taken from [Stone98].

34 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

Table 4.3: Heterogenious parameters for the visual sensors.
Parameters in player_type Value
unum_far_length 20.0
unum_too_far_length 40.0
team_far_length maximum_dist_in_pitch
team_too_far_length maximum_dist_in_pitch
player_max_observation_length maximum_dist_in_pitch
ball_vel_far_length 20
ball_vel_too_far_length 40
ball_max_observation_length maximum_dist_in_pitch
flag_chg_far_length 20
flag_chg_too_far_length 40
flag_max_observation_length maximum_dist_in_pitch

Range of View and View Frequency in Synchronous mode

In synchronous mode, the “low” view quality is not available, and the view widths in Table 4.4 are available. In all
view widths, rcssserver send see messages at server::synch_see_offset milli-seconds from the beginning of the cycle.

Table 4.4: Settings of the synchronous mode
mode view width(degree) see frequency
narrow 60 every cycle
normal 120 every 2 cycles
wide 180 every 3 cycles

Focus Point

The focus point concept was developed in server version 18 to make observations in the game more closely resemble
those made by human observers and camera lenses. The position of the focus point affects the observation noise model.
In brief, the server introduces more noise to the distance of an observed object if the object is farther from the observer’s
focus point.

The default position of the focus point is the player’s position. However, the player can change the focus point by
sending the “(change_focus dist_moment dir_moment)” command. It’s worth noting that the focus point cannot be
outside the player’s view angle, and its maximum distance from the player is 40.

This feature is available to players using version 18 or above on server versions 18 or above.

Visual Sensor Noise Model: Protocol v17 or older

In order to introduce noise in the visual sensor data the values sent from the server is quantized. For example, the
distance value of the object, in the case where the object in sight is a ball or a player, is quantized in the following
manner:

𝑑′ = Q𝑢𝑎𝑛𝑡𝑖𝑧𝑒(exp(Q𝑢𝑎𝑛𝑡𝑖𝑧𝑒(log(𝑑), 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒_𝑠𝑡𝑒𝑝)), 0.1)

where 𝑑 and 𝑑′ are the exact distance and quantized distance respectively, and

Q𝑢𝑎𝑛𝑡𝑖𝑧𝑒(𝑉,𝑄) = c𝑒𝑖𝑙𝑖𝑛𝑔(𝑉/𝑄) ·𝑄

This means that players can not know the exact positions of very far objects. For example, when distance is about 100.0
the maximum noise is about 10.0, while when distance is less than 10.0 the noise is less than 1.0.

4.3. Sensor Models 35

The RoboCup Soccer Simulator Users Manual

In the case of flags and lines, the distance value is quantized in the following manner.

𝑑′ = Q𝑢𝑎𝑛𝑡𝑖𝑧𝑒(exp(Q𝑢𝑎𝑛𝑡𝑖𝑧𝑒(log(𝑑), 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒_𝑠𝑡𝑒𝑝_𝑙)), 0.1)

Visual Sensor Noise Model: Protocol v18

If players use the protocl version 18, the visual sensor noise model is changed as follows:

𝑝𝑟𝑓𝑥 = 𝑝𝑥𝑓 − 𝑝𝑥𝑜

𝑝𝑟𝑓𝑦 = 𝑝𝑦𝑓 − 𝑝𝑦𝑜

𝑓 =
√︁
𝑝2𝑟𝑓𝑥 + 𝑝2𝑟𝑓𝑦

𝑓 ′ = exp(Q𝑢𝑎𝑛𝑡𝑖𝑧𝑒(log(𝑓), 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒_𝑠𝑡𝑒𝑝))

𝑑′′ = Q𝑢𝑎𝑛𝑡𝑖𝑧𝑒(m𝑎𝑥(0.0, 𝑑− (𝑓 − 𝑓 ′)), 0.1)

where (𝑝𝑥𝑓 , 𝑝𝑦𝑓) is the absolute position of the focus point of the observer, (𝑝𝑥𝑜, 𝑝𝑦𝑜) is the absolute position of the
observer, 𝑑 is the exact distance of the observer to the object, 𝑓 and 𝑓 ′ are the exact distance and quantized distance of
the focus point to the object respectively, and 𝑑′′ is the result distance value sent to the observer.

This noise model is applied to observations made by players using version 18. When the observer’s focus point is set
to the default position (i.e., the observer’s position), this model functions in exactly the same way as the visual sensor
noise model in server version 17.

4.3.3 Body Sensor Model

The body sensor reports the current “physical” status of the player. he information is automatically sent to the player
every server::sense_body_step, currently 100, milli-seconds.

The format of the body sensor message is:

(sense_body Time
(view_mode ViewQuality ViewWidth)
(stamina Stamina Effort Capacity)
(speed AmountOfSpeed DirectionOfSpeed)
(head_angle HeadAngle)
(kick KickCount)
(dash DashCount)
(turn TurnCount)
(say SayCount)
(turn_neck TurnNeckCount)
(catch CatchCount)
(move MoveCount)
(change_view ChangeViewCount)
(arm (movable MovableCycles) (expires ExpireCycles) (count PointtoCount))
(focus (target {none|{l|r} Unum}) (count AttentiontoCount))
(tackle (expires ExpireCycles) (count TackleCount))
(collision {none|[(ball)] [(player)] [(post)]})
(foul (charged FoulCycles) (card {red|yellow|none})))

36 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

• ViewQuality is one of high and low.

• ViewWidth is one of narrow, normal, and wide.

• AmountOfSpeed is an approximation of the amount of the player’s speed.

• DirectionOfSpeed is an approximation of the direction of the player’s speed.

• HeadDirection is the relative direction of the player’s head.

• *Count variables are the total number of commands of that type executed by the server. For example DashCount
= 134 means that the player has executed 134 dash commands so far.

• MovableCycles

• ExpireCycles

• FoulCycles

TODO: add descriptions about values. arm [8.03], focus [8.04], tackle [8.04], collision [12.0.0_pre-20071217],
foul [14.0.0] in NEWS

The semantics of the parameters are described where they are actually used. The ViewQuality and ViewWidth param-
eters are for example described in the Section Vision Sensor Model.

The server parameters that affects the body sensor are described in the following table:

Table 4.5: Parameters for the body sensor.
Parameter in server.conf Value
server::sense_body_step 100

4.3.4 Fullstate Sensor Model

TODO

4.4 Movement Models

In each simulation step, movement of each object is calculated as following manner:

(𝑢𝑡+1
𝑥 , 𝑢𝑡+1

𝑦) = (𝑣𝑡𝑥, 𝑣
𝑡
𝑦) + (𝑎𝑡𝑥, 𝑎

𝑡
𝑦) : 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒

(𝑝𝑡+1
𝑥 , 𝑝𝑡+1

𝑦) = (𝑝𝑡𝑥, 𝑝
𝑡
𝑦) + (𝑢𝑡+1

𝑥 , 𝑢𝑡+1
𝑦) : 𝑚𝑜𝑣𝑒

(𝑣𝑡+1
𝑥 , 𝑣𝑡+1

𝑦) = 𝑑𝑒𝑐𝑎𝑦 × (𝑢𝑡+1
𝑥 , 𝑢𝑡+1

𝑦) : 𝑑𝑒𝑐𝑎𝑦 𝑠𝑝𝑒𝑒𝑑

(𝑎𝑡+1
𝑥 , 𝑎𝑡+1

𝑦) = (0, 0) : 𝑟𝑒𝑠𝑒𝑡 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

(4.3)

where, (𝑝𝑡𝑥, 𝑝
𝑡
𝑦), and (𝑣𝑡𝑥, 𝑣

𝑡
𝑦) are respectively position and velocity of the object in timestep 𝑡. decay is a decay parameter

specified by ball_decay or player_decay. (𝑎𝑡𝑥, 𝑎
𝑡
𝑦) is acceleration of object, which is derived from Power parameter

in dash (in the case the object is a player) or kick (in the case of a ball) commands in the following manner:

(𝑎𝑡𝑥, 𝑎
𝑡
𝑦) = 𝑃𝑜𝑤𝑒𝑟 × 𝑝𝑜𝑤𝑒𝑟_𝑟𝑎𝑡𝑒× (cos(𝜃𝑡), sin(𝜃𝑡))

where 𝜃𝑡 is the direction of the object in timestep 𝑡 and power_rate is dash_power_rate or is calculated from
kick_power_rate as described in Sec. Kick Model. In the case of a player, this is just the direction the player is
facing. In the case of a ball, its direction is given as the following manner:

𝜃𝑡𝑏𝑎𝑙𝑙 = 𝜃𝑡𝑘𝑖𝑐𝑘𝑒𝑟 + 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

where 𝜃𝑡𝑏𝑎𝑙𝑙 and 𝜃𝑡𝑘𝑖𝑐𝑘𝑒𝑟 are directions of ball and kicking player respectively, and Direction is the second parameter of
a kick command.

4.4. Movement Models 37

The RoboCup Soccer Simulator Users Manual

4.4.1 Movement Noise Model

In order to reflect unexpected movements of objects in real world, rcssserver adds noise to the movement of objects
and parameters of commands.

Concerned with movements, noise is added into Eqn.:ref:eq:u-t as follows: TODO: new noise model. See [12.0.0
pre-20071217] in NEWS

(𝑢𝑡+1
𝑥 , 𝑢𝑡+1

𝑦) = (𝑣𝑡𝑥, 𝑣
𝑡
𝑦) + (𝑎𝑡𝑥, 𝑎

𝑡
𝑦) + (𝑟r𝑚𝑎𝑥, 𝑟r𝑚𝑎𝑥)

where 𝑟r𝑚𝑎𝑥 is a random number whose distribution is uniform over the range [−r𝑚𝑎𝑥, r𝑚𝑎𝑥]. r𝑚𝑎𝑥 is a parameter
that depends on amount of velocity of the object as follows:

r𝑚𝑎𝑥 = r𝑎𝑛𝑑 · |(𝑣𝑡𝑥, 𝑣𝑡𝑦)|

where r𝑎𝑛𝑑 is a parameter specified by server::player_rand or server::ball_rand.

Noise is added also into the Power and Moment arguments of a command as follows:

𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 = (1 + 𝑟r𝑎𝑛𝑑) · 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡

4.5 Collision Model

4.5.1 Collision with other movable objects

If at the end of the simulation cycle, two objects overlap, then the objects are moved back until they do not overlap.
Then the velocities are multiplied by -0.1. Note that it is possible for the ball to go through a player as long as the ball
and the player never overlap at the end of the cycle.

4.5.2 Collision with goal posts

Goal posts are circular with a radius of 6cm and they are located at:

𝑥 = ±(𝐹𝐼𝐸𝐿𝐷_𝐿𝐸𝑁𝐺𝑇𝐻 · 0.5 − 6𝑐𝑚)

𝑦 = ±(𝐺𝑂𝐴𝐿_𝑊𝐼𝐷𝑇𝐻 · 0.5 + 6𝑐𝑚)

The goal posts have different collision dynamics than other objects. An object collides with a post if it’s path gets
within object.size + 6cm of the center of the post. An object that collides with the post bounces off elastically.

4.6 Action Models

4.6.1 Catch Model

The goalie is the only player with the ability to catch a ball. The goalie can catch the ball in play mode play_on in any di-
rection, if the ball is within the catchable area and the goalie is inside the penalty area. If the goalie catches into direction
𝜙, the catchable area is a rectangular area of length server::catchable_area_l and width server::catchable_area_w
in direction 𝜙 (see Fig. 4.4). The ball will be caught with probability server::catch_probability, if it is inside this area
(and it will not be caught if it is outside this area). For the current values of catch command parameters see Table 4.6:

38 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�� ��

��
��

��
��

��
�� ��

�
��
�

��
��	

�����

���� �� ��

�������� ��������

��
�

��
�

��
�

��
�

��
�

��
�

��
��
��

��
��
��

ca
tch

ab
le_

ar
ea

_l

45
°

ca
tc

h
an

gl
e

ca
tch

ab
le_

ar
ea

_w

Fig. 4.4: Catchable area of the goalie when doing a (catch 45)

Table 4.6: Parameters for the goalie catch command
Parameter in server.conf and player.conf Value
server::catchable_area_l 2.0
server::catchable_area_w 1.0
server::catch_probability 1.0
server::catch_ban_cycle 5
server::goalie_max_moves 2
player::catchable_area_l_stretch_max 1.3
player::catchable_area_l_stretch_min 1

First time when goalie has been introduced in Soccer Simulation 2D was with server version 4.0.0: When a client
connects the server with ‘(init TEAMNAME (goalie)’, the client becomes a goalies. The goalie can use ‘(catch DIR)’
command that enable to capture the ball.

With server version 4.0.2 another parameter named server::catch_probability has been introduced. This parameter
represents the probability that a goalie succeed to catch the ball by a catch command. (default value: 1.0)

If the goalie successfully catches a ball it is moved adjacent to and facing the ball and both the goalie and ball have
their velocities set to zero. When the goalie moves, dashes or turns while the ball is caught, the ball remains adjacent
to and directly in front of the goalie.

The goalie can issue catch commands at any location. If the catch is successful, and the ball is outside of the penalty
area or if the goalie moves the ball outside of the penalty area and it’s still in the field, an indirect free kick is awarded
to the opposing team at the ball’s current location. If a caught ball is moved over the goal line but not inside the goal,
a corner kick is awarded. If a caught ball is moved into the goal, a goal is awarded.

Later, in server version 14.0.0 a heterogeneous goalie has been introduced. Beginning with this version online

4.6. Action Models 39

The RoboCup Soccer Simulator Users Manual

coaches can change the player type of goalie. The ‘catchable_area_l_stretch’ variable was added to each hetero-
geneous player type through two new parameters: player::catchable_area_l_stretch_min (default value: 1.0) and
player::catchable_area_l_stretch_max (default value: 1.3)

The following pseudo code shows a trade-off rule of the catch model:

// catchable_area_l_stretch is the heterogeneous parameter, currenlty within [1.0,1.3]

double this_catchable_are_delta = server::catchable_area_l * (catchable_area_l_stretch -␣
→˓1.0)
double this_catchable_area_l_max = server::catchable_area_l + this_catchable_are_delta
double this_catchable_area_l_min = server::catchable_area_l - this_catchable_are_delta

if (ball_pos is inside the MINIMAL catch area)
{

// the MINIMAL catch area has a length of this_catchable_area_l_min and width␣
→˓server::catchable_area_w goalie
// catches the ball with probability server::catch_probability (which is 1.0 by␣

→˓default)
}
else if (ball_pos is beyond the MAXIMAL (stretched) area)
{

// the MAXIMAL catch area has a length of this_catchable_area_l_max and width␣
→˓server::catchable_area_w goalie
// definitely misses the ball

}
else
{

double ball_relative_x = (ball_pos - goalie_pos).rotate(-(goalie_body + catch_dir)).x
double catch_prob = server::catch_probability

- server::catch_probability
* (ball_relative_x - this_catchable_area_l_min)
/ (this_catchable_area_l_max - this_catchable_area_l_min)

// goalie catches the ball with probability catch_prob it holds: catch_prob is in [0.
→˓0,1.0]
}

If a catch command was unsuccessful, it takes server::catch_ban_cycle cycles until another catch command can be
used (catch commands during this time have simply no effect). If the goalie succeeded in catching the ball, the play mode
will change to goalie_catch_ball_[l|r] first and free_kick_[l|r], after that during the same cycle. Once the
goalie caught the ball, it can use the move command to move with the ball inside the penalty area. The goalie can use the
move command server::goalie_max_moves times before it kicks the ball. Additional move commands do not have any
effect and the server will respond with (error too_many_moves). Please note that catching the ball, moving around,
kicking the ball a short distance and immediately catching it again to move more than server::goalie_max_moves times
is considered as ungentlemanly play.

Starting with server version 15.0.0 an improvement of the catch model has been introduced:

• If goalie fails to catch the ball beyond the fuzzy catchable area, the ball has no effect. (same as the previous
model)

• If goalie fails to catch the ball within a fuzzy catchable area, the ball is accelerated to the catch command direction.
(it is similar to the ball bouncing from the wall that the normal vector’s direction is same as the catch command
direction)

40 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

4.6.2 Dash Model

The dash command is used to accelerate the player in direction of its body. dash takes the acceleration power as a
parameter. The valid range for the acceleration power can be configured in server.conf, the respective parameters
are server::min_dash_power and server::max_dash_power. For the current values of parameters for the dash model,
see the following table:

4.6. Action Models 41

The RoboCup Soccer Simulator Users Manual

Table 4.7: Dash and Stamina Model Parameters

Default Parameters
server.conf

Default Value (Range) Heterogeneous Player
Parameters

player.conf

Value

server::min_dash_power -100.0
server::max_dash_power 100.0
server::player_decay
server::inertia_moment

0.4 ([0.3, 0.5])
5.0 ([2.5, 7.5])

player::player_decay_delta_min

player::player_decay_delta_max

player::inertia_moment_delta_factor

-0.1
0.1
25.0

server::player_accel_max 1.0
server::player_rand 0.1
server::player_speed_max 1.05
server::player_speed_max_min0.75
server::stamina_max 8000.0
server::stamina_capacity 130600.0

server::stamina_inc_max
server::dash_power_rate

45.0 ([40.2, 52.2])
0.006 ([0.0048, 0.0068])

player::new_dash_power_rate_delta_min

player::new_dash_power_rate_delta_max

player::new_stamina_inc_max_delta_factor

-0.0012
0.0008
-6000

server::extra_stamina
server::effort_init
server::effort_min

50.0 ([50.0, 100.0])
1.0 ([0.8, 1.0])
0.6 ([0.4, 0.6])

player::extra_stamina_delta_min

player::extra_stamina_delta_max

player::effort_max_delta_factor

player::effort_min_delta_factor

0.0
50.0
-0.004
-0.004

server::effort_dec 0.3
server::effort_dec_thr 0.005
server::effort_inc 0.01
server::effort_inc_thr 0.6
server::recover_dec_thr 0.3
server::recover_dec 0.002
server::recover_init 1.0
server::recover_min 0.5
server::wind_ang 0.0
server::wind_dir 0.0
server::wind_force 0.0
server::wind_rand 0.0

42 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

Each player has a certain amount of stamina that will be consumed by dash commands. At the beginning of each
half, the stamina of a player is set to server::stamina_max. If a player accelerates forward (𝑝𝑜𝑤𝑒𝑟 > 0), stamina
is reduced by power. Accelerating backwards (𝑝𝑜𝑤𝑒𝑟 < 0) is more expensive for the player: stamina is reduced
by −2 × 𝑝𝑜𝑤𝑒𝑟. If the player’s stamina is lower than the power needed for the dash, power is reduced so that the
dash command does not need more stamina than available. Some extra stamina can be used every time the available
power is lower than the needed stamina. The amount of extra stamina depends on the player type and the parameters
player::extra_stamina_delta_min and player::extra_stamina_delta_max.

After reducing the stamina, the server calculates the effective dash power for the dash command. The effective dash
power edp depends on the dash_power_rate and the current effort of the player. The effort of a player is a value
between effort_min and effort_max; it is dependent on the stamina management of the player (see below).

e𝑑𝑝 = e𝑓𝑓𝑜𝑟𝑡 · d𝑎𝑠ℎ_𝑝𝑜𝑤𝑒𝑟_𝑟𝑎𝑡𝑒 · p𝑜𝑤𝑒𝑟 (4.4)

edp and the players current body direction are tranformed into vector and added to the players current acceleration
vector �⃗�𝑛 (usually, that should be 0 before, since a player cannot dash more than once a cycle and a player does not get
accelerated by other means than dashing).

At the transition from simulation step 𝑛 to simulation step 𝑛 + 1, acceleration �⃗�𝑛 is applied:

TODO: dash speed restriction. See [12.0.0_pre-20071217]

1. �⃗�𝑛 is normalized to a maximum length of server::player_accel_max.

2. �⃗�𝑛 is added to current players speed �⃗�𝑛. �⃗�𝑛 will be normalized to a maxi-
mum length of player_speed_max. players, the maximum speed is a value between
server::player_speed_max + player::player_speed_max_delta_min and server::player_speed_max +
player::player_speed_max_delta_max in player.conf.

3. Noise �⃗� and wind �⃗� will be added to �⃗�𝑛. Both noise and wind are configurable in server.conf. Parameters respon-
sible for the wind are server::wind_force, server::wind_dir and server::wind_rand. With the current settings,
there is no wind on the simulated soccer field. The responsible parameter for the noise is server::player_rand.
Both direction and length of the noise vector are within the interval [−|�⃗�𝑛|·p𝑙𝑎𝑦𝑒𝑟_𝑟𝑎𝑛𝑑 . . . |�⃗�𝑛|·p𝑙𝑎𝑦𝑒𝑟_𝑟𝑎𝑛𝑑].

4. The new position of the player 𝑝𝑛+1 is the old position 𝑝𝑛 plus the velocity vector �⃗�𝑛 (i.e.the maximum distance
difference for the player between two simulation steps is player_speed_max).

5. player_decay is applied for the velocity of the player: �⃗�𝑛+1 = �⃗�𝑛 · p𝑙𝑎𝑦𝑒𝑟_𝑑𝑒𝑐𝑎𝑦. Acceleration �⃗�𝑛+1 is set to
zero.

Sideward and Omni-Directional Dashes

Besides the forward and backward dashes that were already described in the previous section, since version 13 the
Soccer Server also supports the possibility to perform sideward and even omni-directional dashes. In addition to the
already known parameter of the dash(x) command where 𝑥 ∈ [−100, 100] determines the relativ strength of the dash
(with negative sign indicating a backward dash), the omni-directional dash model uses two parameters to the dash
command:

𝑑𝑎𝑠ℎ(𝑝𝑜𝑤𝑒𝑟, 𝑑𝑖𝑟) (4.5)

where 𝑝𝑜𝑤𝑒𝑟 determines the relative strength of the dash and 𝑑𝑖𝑟 represents the direction of the dash accelaration
relative to the player’s body angle. The format in which the command needs to be sent to the Soccer Server is (dash
<power> <dir>). If a negative value is used for 𝑝𝑜𝑤𝑒𝑟, then the reverse side angle of 𝑑𝑖𝑟 will be used. Practically,
the direction of the dash is restricted to by the corresponding Soccer Server parameters to

𝑑𝑖𝑟 ∈ [𝑠𝑒𝑟𝑣𝑒𝑟 :: 𝑚𝑖𝑛_𝑑𝑎𝑠ℎ_𝑎𝑛𝑔𝑙𝑒, 𝑠𝑒𝑟𝑣𝑒𝑟 :: 𝑚𝑎𝑥_𝑑𝑎𝑠ℎ_𝑎𝑛𝑔𝑙𝑒]

The effective power of the dash command is determined by the absolute value of the dash direction. Players will
always dash with full effective power (100%) alongside their current body orientation, i.e. when using a zero direction

4.6. Action Models 43

The RoboCup Soccer Simulator Users Manual

angle as described in the preceding section. Two further Soccer Server parameters, server::side_dash_rate and
server::back_dash_rate, determine the effective power that is applied when a non-straight dash is performed.

Thus, for example, strafing movements (90 degrees left/right to the player) will be performed with 40% of effective
power, whereas backward dashes will performed with 60% (according to current Soccer Server parameter default
values). For values between these four main directions a linear interpolation of the effective power will be applied. The
following formula explains the maths behind the sideward dash model.

𝑑𝑖𝑟_𝑟𝑎𝑡𝑒 =

{︃
𝑏𝑎𝑐𝑘_𝑑𝑎𝑠ℎ_𝑟𝑎𝑡𝑒− (𝑏𝑎𝑐𝑘_𝑑𝑎𝑠ℎ_𝑟𝑎𝑡𝑒− 𝑠𝑖𝑑𝑒_𝑑𝑎𝑠ℎ_𝑟𝑎𝑡𝑒) * (1.0 − (𝑓𝑎𝑏𝑠(𝑑𝑖𝑟) − 90.0)/90.0) if 𝑓𝑎𝑏𝑠(𝑑𝑖𝑟) > 90.0

𝑠𝑖𝑑𝑒_𝑑𝑎𝑠ℎ_𝑟𝑎𝑡𝑒 + (1.0 − 𝑠𝑖𝑑𝑒_𝑑𝑎𝑠ℎ_𝑟𝑎𝑡𝑒) * (1.0 − 𝑓𝑎𝑏𝑠(𝑑𝑖𝑟)/90.0)) else
(4.6)

As discussed in the description of the forward/backward dash model in the preceding section, there exists the server
parameter server::min_dash_power which determines the highest minimal value that can be used for the first pa-
rameter 𝑝𝑜𝑤𝑒𝑟 of the dash command. It is expected that this parameter will be set to zero in future versions of the
Soccer Server, while, for reasons of compatibility with older team binaries, its default value of -100 is encouraged
currently.

Finally, the parameter server::dash_angle_step allows for a finer discreteness of players’ dash directions. If this
value is set to 90.0 degrees, players are allowed to dash into the four main directions, for a setting of 45.0 we arrive at
eight different directions. Setting this parameter to 1.0, the Soccer Server is capable of emulating an omnidirectional
movement model as it is commen, for example, in the MidSize League.

The following table summarizes all Soccer Server parameters that are of relevance for omni-directional dashing.

Table 4.8: Ominidirectional Dash Parameters

Default Parameters
server.conf

Default Value (Range) Heterogeneous Player
Parameters

player.conf

Value

server::server::max_dash_angle180.0
server::server::min_dash_angle-180.0
server::side_dash_rate 0.4
server::back_dash_rate 0.6
server::dash_angle_step 1

Stamina Model

For the stamina of a player, there are three important variables: the stamina value, recovery and effort. stamina is
decreased when dashing and gets replenished slightly each cycle. recovery is responsible for how much the stamina
recovers each cycle, and the effort says how effective dashing is (see section above). Important parameters for the
stamina model are changeable in the files server.conf and player.conf. Basically, the algorithm shown in the
following code block says that every simulation step the stamina is below some threshold, effort or recovery are reduced
until a minimum is reached. Every step the stamina of the player is above some threshold, effort is increased up to a
maximum. The recovery value is only reset to 1.0 each half, but it will not be increased during a game.

if stamina is below recovery decrement threshold, recovery is reduced
if stamina <= recover_dec_thr * stamina_max
if recovery > recover_min

recovery = recovery - recover_dec

if stamina is below effort decrement threshold, effort is reduced
(continues on next page)

44 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

(continued from previous page)

if stamina <= effort_dec_thr * stamina_max
if effort > effort_min
effort = effort - effort_dec
effort = max(effort, effort_min)

if stamina is above effort increment threshold, effort is increased
if stamina >= effort_inc_thr * stamina_max
if effort < effort_max
effort = effort + effort_inc
effort = min(effort, effort_max)

recover the stamina a bit
stamina_inc = recovery * stamina_inc_max
stamina = min(stamina + stamina_inc, stamina_max)

In rcssserver version 13 or later, the stamina_capacity variable has been implemented as one of the player’s stamina
models in addition to the above three stamina variables. stamina_capacity is defined as the maximum recovery ca-
pacity of each player’s stamina. When a player’s stamina is recovered during a game, the same amount of stamina is
also consumed from one’s stamina_capacity. Once the player’s stamina_capacity becomes 0, one’s stamina is never
recovered and the only extra_stamina is consumed instead of the normal stamina. The updated algorithm is shown in
the following code block. stamina_inc can be available from the previous code block.

stamina_inc is restricted by the residual capacity
if stamina_capacity >= 0.0
if stamina_inc > stamina_capacity
stamina_inc = stamina_capacity

stamina = min(stamina + stamina_inc, stamina_max)

stamina capacity is reduced as the same amount as stamina_inc
if stamina_capacity >= 0.0
stamina_capacity = max(0.0, stamina_capacity - stamina_inc)

stamina_capacity is reset to the initial value just after the kick-off of normal halves as well as the other stamina-related
variables. However, stamina_capacity is never recovered at the half time of extra-inning games and before the penalty
shootouts. The stamina_capacity is defined as one of the parameters of rcssserver server::stamina_capacity (the de-
fault value of stamina_capacity is 130600 as of rcsserver version 16.0.0). If server::stamina_capacity is set to a negative
value, each player has an infinite stamina capacity. This setting makes the stamina-model including stamina_capacity
completely the same with the stamina model before rcssserver version 13. stamina_capacity information is received as
the following sense_body message:

(stamina <STAMINA> <EFFORT> <CAPACITY>)

4.6.3 Kick Model

The kick command takes two parameters, the kick power the player client wants to use (between server::minpower
and server::maxpower) and the angle the player kicks the ball to. The angle is given in degrees and has to be between
server::minmoment and server::maxmoment (see Table 4.9 for current parameter values).

Once the kick command arrived at the server, the kick will be executed if the ball is kick-able for the player and the
player is not marked offside. The ball is kick-able for the player, if the distance between the player and the ball is
between 0 and kickable_margin. Heterogeneous players can have different kickable margins. For the calculation of
the distance during this section, it is important to know that if we talk of distance between player and ball, we talk about

4.6. Action Models 45

The RoboCup Soccer Simulator Users Manual

the minimal distance between the outer shape of both player and ball. So the distance in this section is the distance
between the center of both objects minus the radius of the ball minus the radius of the player.

The first thing to be calculated for the kick is the effective kick power ep:

e𝑝 = k𝑖𝑐𝑘𝑝𝑜𝑤𝑒𝑟 · k𝑖𝑐𝑘_𝑝𝑜𝑤𝑒𝑟_𝑟𝑎𝑡𝑒 (4.7)

If the ball is not directly in front of the player, the effective kick power will be reduced by a certain amount dependent
on the position of the ball with respect to the player. Both angle and distance are important.

If the relative angle of the ball is 0∘ wrt. the body direction of the player client - i.e. the ball is in front of the player -
the effective power will stay as it is. The larger the angle gets, the more the effective power will be reduced. The worst
case is if the ball is lying behind the player (angle 180∘): the effective power is reduced by 25%.

The second important variable for the effective kick power is the distance from the ball to the player: it is quite obvious
that - should the kick be executed - the distance between ball and player is between 0 and player’s kickable margin. If
the distance is 0, the effective kick power will not be reduced again. The further the ball is away from the player client,
the more the effective kick power will be reduced. If the ball distance is player’s kickable margin, the effective kick
power will be reduced by 25% of the original kick power.

The overall worst case for kicking the ball is if a player kicks a distant ball behind itself: 50% of kick power will be
used. For the effective kick power, we get the formula (4.8). (dir diff means the absolute direction difference between
ball and the player’s body direction, dist diff means the absolute distance between ball and player.) 0 ≤ dir_diff ≤
180∘ ∧ 0 ≤ dist_diff ≤ kickable_margin

e𝑝 = ep · (1 − 0.25 · dir_diff

180∘
− 0.25 · dist_ball

kickable_margin
) (4.8)

The effective kick power is used to calculate �⃗�𝑛𝑖
, an acceleration vector that will be added to the global ball acceleration

�⃗�𝑛 during cycle 𝑛 (remember that we have a multi agent system and each player close to the ball can kick it during the
same cycle).

There is a server parameter, server::kick_rand, that can be used to generate some noise to the ball acceleration. For the
default players, kick_rand is 0.1. For heterogeneous players, kick_rand depends on player::kick_rand_delta_factor
in player.conf and on the actual kickable margin. .. In RoboCup 2000, kick_rand was used to generate some noise
during evaluation round for the normal players.

• TODO: new kick/tackle noise model. See [12.0.0 pre-20080210] in NEWS

• TODO: heterogeneous kick power rate. See [14.0.0] in NEWS

During the transition from simulation step 𝑛 to simulation step 𝑛 + 1 acceleration �⃗�𝑛 is applied:

1. �⃗�𝑛 is normalized to a maximum length of server::ball_accel_max.

2. �⃗�𝑛 is added to the current ball speed �⃗�𝑛. �⃗�𝑛 will be normalized to a maximum length of server::ball_speed_max.

3. Noise �⃗� and wind �⃗� will be added to �⃗�𝑛. Both noise and wind are configurable in server.conf. The respon-
sible parameter for the noise is server::ball_rand. Both direction and length of the noise vector are within the
interval [−|�⃗�𝑛| · ball_rand . . . |�⃗�𝑛| · ball_rand]‘. Parameters responsible for the wind are server::wind_force,
server::wind_dir and server::wind_rand.

4. The new position of the ball 𝑝𝑛+1 is the old position 𝑝𝑛 plus the velocity vector �⃗�𝑛 (i.e. the maximum distance
difference for the ball between two simulation steps is server::ball_speed_max).

5. server::ball_decay is applied for the velocity of the ball: �⃗�𝑛+1 = �⃗�𝑛 · ball_decay. Acceleration �⃗�𝑛+1 is set to
zero.

With the current settings the ball covers a distance up to 50, assuming an optimal kick. 55 cycles after an optimal kick,
the distance from the kick off position to the ball is about 48, the remaining velocity is smaller than 0.1. 18 cycles after
an optimal kick, the ball covers a distance of 34 - 34 and the remaining veloctity is slightly smaller than 1.

46 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

Implications from the kick model and the current parameter settings are that it still might be helpful to use several
small kicks for a compound kick – for example stopping the ball, kick it to a more advantageous position within the
kickable area and kick it to the desired direction. It would be another possibility to accelerate the ball to maximum
speed without putting it to relative position (0,0{textdegree}) using a compound kick.

Table 4.9: Ball and Kick Model Parameters

Default Parameters
server.conf

Default Value (Range) Heterogeneous Player
Parameters

player.conf

Value

server::minpower -100
server::maxpower 100
server::minmoment -180
server::maxmoment 180
server::kickable_margin 0.7 ([0.6, 0.8])

player::kickable_margin_delta_min

player::kickable_margin_delta_max

-0.1 0.1

server::kick_power_rate 0.027
server::kick_rand 0.1 ([0.0, 0.2])

player::kick_rand_delta_factor

player::kickable_margin_delta_min

player::kickable_margin_delta_max

1 -0.1 0.1

server::ball_size 0.085
server::ball_decay 0.94
server::ball_rand 0.05
server::ball_speed_max 3.0
server::ball_accel_max 2.7
server::wind_force 0.0
server::wind_dir 0.0
server::wind_rand 0.0

4.6.4 Move Model

The move command can be used to place a player directly onto a desired position on the field. move exists to
set up the team and does not work during normal play. It is available at the beginning of each half (play mode
before_kick_off’) and after a goal has been scored (play modes goal_l_? or goal_r_? ’). In these situations,
players can be placed on any position in their own half (i.e. X < 0) and can be moved any number of times, as long as
the play mode does not change. Players moved to a position on the opponent half will be set to a random position on
their own side by the server. A second purpose of the move command is to move the goalie within the penalty area after
the goalie caught the ball. If the goalie caught the ball, it can move together with the ball within the penalty area. The
goalie is allowed to move goalie_max_moves times before it kicks the ball. Additional move commands do not have
any effect and the server will respond with (error too_many_moves).

4.6. Action Models 47

The RoboCup Soccer Simulator Users Manual

Table 4.10: Parameter for the move_command
Parameter in server.conf Value
goalie_max_moves 2

4.6.5 Say Model

Using the say command, players can broadcast messages to other players. Messages can be say_msg_size characters
long, where valid characters for say messages are from the set sth (without the square brackets). Messages players say
can be heard within a distance of audio_cut_dist by members of both teams . Say messages sent to the server will be
sent back to players within that distance immediately. The use of the say command is only restricted by the limited
capacity of the players of hearing messages.

Table 4.11: Parameter for the say command
Parameter in server.conf Value
say_msg_size 10
audio_cut_dist 50
hear_max 1
hear_inc 1
hear_decay 1

4.6.6 Tackle Model

The tackle command is to accelerate the ball towards the player’s body(TODO:new tackle model [12.0.0 pre-
20080210]). Players can kick the ball that can not be kicked with the kick command by executing the tackle command.
The success of tackle depends on a random probability related to the position of the ball. It can be obtained by the
following formula.

The probability of a tackle failure when the ball is in front of the player is:

f𝑎𝑖𝑙_𝑝𝑟𝑜𝑏 = (𝑝𝑙𝑎𝑦𝑒𝑟_𝑡𝑜_𝑏𝑎𝑙𝑙.𝑥÷ 𝑡𝑎𝑐𝑘𝑙𝑒_𝑑𝑖𝑠𝑡)𝑡𝑎𝑐𝑘𝑙𝑒_𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 + (𝑝𝑙𝑎𝑦𝑒𝑟_𝑡𝑜_𝑏𝑎𝑙𝑙.𝑦 ÷ 𝑡𝑎𝑐𝑘𝑙𝑒_𝑤𝑖𝑑𝑡ℎ)𝑡𝑎𝑐𝑘𝑙𝑒_𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

The probability of a tackle failure when the ball is behind the player is:

f𝑎𝑖𝑙_𝑝𝑟𝑜𝑏 = (𝑝𝑙𝑎𝑦𝑒𝑟_𝑡𝑜_𝑏𝑎𝑙𝑙.𝑥÷ 𝑡𝑎𝑐𝑘𝑙𝑒_𝑏𝑎𝑐𝑘_𝑑𝑖𝑠𝑡)𝑡𝑎𝑐𝑘𝑙𝑒_𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 + (𝑝𝑙𝑎𝑦𝑒𝑟_𝑡𝑜_𝑏𝑎𝑙𝑙.𝑦 ÷ 𝑡𝑎𝑐𝑘𝑙𝑒_𝑏𝑎𝑐𝑘_𝑤𝑖𝑑𝑡ℎ)𝑡𝑎𝑐𝑘𝑙𝑒_𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

The probability of processing success is:

t𝑎𝑐𝑘𝑙𝑒_𝑝𝑟𝑜𝑏 = 1.0˘𝑓𝑎𝑖𝑙_𝑝𝑟𝑜𝑏

In this case, when the ball is in front of the player, it is used to tackle_dist (default is 2.0), otherwise it is used to
tackle_back_dist (default is 0.5); player_to_ball is a vector from the player to the ball, relative to the body direction
of the player. When the tackle command is successful, it will give the ball an acceleration in its own body direction.

The execution effect of tackle is similar to that of kick, which is obtained by multiplying the parameter
tackle_power_rate (default is 0.027) with power. It can be expressed by the following formula:

e𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒_𝑝𝑜𝑤𝑒𝑟 = p𝑜𝑤𝑒𝑟 × t𝑎𝑐𝑘𝑙𝑒_𝑝𝑜𝑤𝑒𝑟_𝑟𝑎𝑡𝑒

Once the player executes the tackle command, whether successful or not, the player can no longer move within 10
cycles. The following table shows the parameters used in tackle command.

TODO

48 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

• [12.0.0 pre-20080210] new kick/tackle noise model

• [12.0.0 pre-20080210] max_back_tackle_power

• [13.0.0] forbid backward tackle

• [14.0.0] increasing tackle noise using server::tackle_rand_factor

Table 4.12: Parameters for the tackle command
Parameter in server.conf Value
tackle_dist 2
tackle_back_dist 0
tackle_width 1.25
tackle_cycles 10
tackle_exponent 6
tackle_power_rate 0.027
max_tackle_power 100
max_back_tackle_power 0
tackle_rand_factor 2

4.6.7 Foul Model

TODO

• [14.0.0] foul model and intentional foul option

• [14.0.0] trade off between foul detect probability and kick power rate

• [15.0.0] improve foul model (red_card_probability)

4.6.8 Turn Model

While dash is used to accelerate the player in direction of its body, the turn command is used to change the play-
ers body direction. The argument for the turn command is the moment; valid values for the moment are between
server::minmoment and server::maxmoment. If the player does not move, the moment is equal to the angle the
player will turn. However, there is a concept of inertia that makes it more difficult to turn when you are moving.
Specifically, the actual angle the player is turned is as follows:

a𝑐𝑡𝑢𝑎𝑙_𝑎𝑛𝑔𝑙𝑒 = m𝑜𝑚𝑒𝑛𝑡÷ (1.0 + 𝑖𝑛𝑒𝑟𝑡𝑖𝑎_𝑚𝑜𝑚𝑒𝑛𝑡× p𝑙𝑎𝑦𝑒𝑟_𝑠𝑝𝑒𝑒𝑑)

server::inertia_moment is a server.conf parameter with default value 5.0. Therefore (with default values), when the
player is at speed 1.0, the maximum effective turn he can do is ±30. However, notice that because you can not dash
and turn during the same cycle, the fastest that a player can be going when executing a turn is 𝑝𝑙𝑎𝑦𝑒𝑟_𝑠𝑝𝑒𝑒𝑑_𝑚𝑎𝑥 ×
𝑝𝑙𝑎𝑦𝑒𝑟_𝑑𝑒𝑐𝑎𝑦, which means the effective turn for a default player (with default values) is ±60.

For heterogeneous players, the inertia moment is the default inertia value plus
a value between p𝑙𝑎𝑦𝑒𝑟_𝑑𝑒𝑐𝑎𝑦_𝑑𝑒𝑙𝑡𝑎_𝑚𝑖𝑛× 𝑖𝑛𝑒𝑟𝑡𝑖𝑎_𝑚𝑜𝑚𝑒𝑛𝑡_𝑑𝑒𝑙𝑡𝑎_𝑓𝑎𝑐𝑡𝑜𝑟 and
p𝑙𝑎𝑦𝑒𝑟_𝑑𝑒𝑐𝑎𝑦_𝑑𝑒𝑙𝑡𝑎_𝑚𝑎𝑥× 𝑖𝑛𝑒𝑟𝑡𝑖𝑎_𝑚𝑜𝑚𝑒𝑛𝑡_𝑑𝑒𝑙𝑡𝑎_𝑓𝑎𝑐𝑡𝑜𝑟.

4.6. Action Models 49

The RoboCup Soccer Simulator Users Manual

Table 4.13: Turn Model Parameter

Default Parameters
server.conf

Default Value (Range) Heterogeneous Player
Parameters

player.conf

Value

Name Name
server::minmoment -180
server::maxmoment 180
server::inertia_moment 5.0([2.5, 7.5])

player::player_decay_delta_min

player::player_decay_delta_max

player::inertia_moment_delta_factor

-0.1
0.1
25

4.6.9 TurnNeck Model

With turn_neck, a player can turn its neck somewhat independently of its body. The angle of the head of the player is
the viewing angle of the player. The turn command changes the angle of the body of the player while turn_neck changes
the neck angle of the player relative to its body. The minimum and maximum relative angle for the player’s neck are
given by server::minneckang and server::maxneckang in server.conf. Remember that the neck angle is relative to
the body of the player so if the client issues a turn command, the viewing angle changes even if no turn_neck command
was issued. Also, turn_neck commands can be executed during the same cycle as turn, dash, and kick commands.
turn_neck is not affected by momentum like turn is. The argument for a turn_neck command must be in the range
between server::minneckmoment and server::maxneckmoment.

Table 4.14: Parameter for the turn neck command
Parameter in server.conf Value
minneckang -90
maxneckang 90
minneckmoment -180
maxneckmoment 180

4.6.10 Change Focus Model

The focus point is a feature developed in server v.18, which can be used by players v.18 and above. It represents a
position inside a player’s view angle, and can be up to 40.0 meters away from the player’s position. The focus point
affects the visual sensor noise model, with the noise of observed objects increasing as the distance between the focus
point and the object increases.

The initial position of the focus point is the player’s position, and if a player does not change the focus point position,
the server visual noise model behaves as in server v.17. However, a player can change the position of the focus point by
sending a change_focus command. This command takes two parameters, dist_moment and dir_moment, and changes
the position of the focus point relative to the player’s neck angle.

It is important to note that players are not allowed to move the focus point outside of their view angle. Additionally,
if a player changes their view angle to a smaller one, the server will automatically move the focus point back into the

50 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

player’s view angle.

4.6.11 Pointto Model

Players can send commands to point to a spot on the field of the form:

(pointto <DIST> <DIR>)

or

(pointto off)

The first form will cause the arm to point to the spot DIST meters from the player in DIR direction, relative to the
player’s current face direction. The player will continue to point to the same location on the field independent of an
motion or rotation of the player for at least server::point_to_ban cycles, and until another pointto command is issued
or server::point_to_duration cycles pass. The second form disables a previous call of pointto.

Table 4.15: Parameter for the pointto command
Parameter in server.conf Value
point_to_ban 5
point_to_duration 20

Version 8+ clients can see where a player is pointing, if the player is pointing, the player is in view and they are close
enough to determine their team name. In these cases the player part of the see message has the form (without the
newline):

(p “<TEAMNAME>” <UNUM>) <DIST> <DIR> <DISTCHG> <DIRCHG>
<BDIR> <HDIR> <POINTDIR>)

or
(p “<TEAMNAME>”) <DIST> <DIR> <POINTDIR>)

Where POINTDIR is the direction the players are is pointing with random Gaussian (normal)noise added to the actual
direction, with a mean of zero and a standard deviation calculated as follows:

sigma = pow(dist / team_too_far_length, 4) * 178.25 + 1.75

This means that sigma is a minimum of 1.75 deg and reaches 180 deg when the player is observing a pointing arm from
a distance of team_too_far_length. Since 95% of values in a normal distributionare within two standard deviations,
then 95% of the time the noise will be in the range +- 2.5 deg when the player is very close and in the range +- 360.0
deg when the player is team_too_far_length away.

sense_body messages for version 8+ clients contain information about the arm actuator. The following has been
inserted into the sense_body message, just before the last ‘)’, without the new line:

(arm (movable <MOVABLE>) (expires <EXPIRES>)
(target <DIST> <DIR>) (count <COUNT>))

Where:

• <MOVABLE> is the number of cycles till the arm is movable. 0 indicates the arm is movable now

• <EXPIRES> is the number of cycles till the arm stops pointing. 0 indicates that the arm is no longer pointing,

• <DIST> and <DIR> are the distance and direction of the point the player is pointing to, relative to the players
location, orientation and neck angle, accurate to 10cm or 0.1 deg.

• <COUNT> is the number of times the pointto command has been successfully executed by the player.

4.6. Action Models 51

The RoboCup Soccer Simulator Users Manual

Fullstate messages have both <POINTDIST> and <POINTDIR> included between neck angle and stamina. The players
own arm state has the same format as in sense body (see below) and can be found between the count and score part.

Version 8+ coaches (on and offline) can see where a player is pointing to if the player is pointing. The direction the
player is pointing comes just after the players neck angle.

4.6.12 Attentionto Model

Version 8 and above players can send attentionto commands to focus their attention on a particular player. The
command has the form:

(attentionto <TEAM> <UNUM>) | (attentionto off)

Where <TEAM> is

opp | our | l | r | left | right | <TEAM_NAME>

and <UNUM> is integer identifying a member of the team specified. Players can only focus on one player at a time (each
attentionto command overrides the previous) and cannot focus on themselves.

See Sensor Models in detail about the aural sensor.

4.7 Heterogeneous Players

With the rcssserver version 7, heterogeneous players were introduced. For heterogeneous players, the server generates
player::player_types random player types at startup. The player types have different capabilities based on the trade-
offs defined in the player.conf file. Both teams of a match use the same player types. Type 0 is the default type and is
always the same. If player::random_seed is not 0, the fixed set of heterogenous player paramters can be generated
based on the given seed value. Table 4.16 shows the differences of heterogeneous players:

When players and coaches connect to the server, they can receive information about the available player types. The on-
line coaches can change player types unlimited times before the first kick off and change player types player::subs_max
times during other non-play_on play modes using the change_player_type command (see Commands).

The online coach can substitute a same player type within player::pt_max times. This restriction also applied to the
default player type. This means that all field players have to be changed to the non-default type. In version 16, the
goalie is still allowed to be assigned the default type. However, if server::allow_mult_default_type is false and teams
use the default player type more than player::pt_max, rcssserver automatically assign the heterogeneous player type to
field players just before the playmode is changed to kick-off.

The online coach can substitute a same player type within player::pt_max times. This restriction is not applied to the
default player type. If player::pt_max is 1, each player type except the default type can be used only once.

Each time a player is substituted by some other player type, its stamina, recovery and effort is reset to the initial
(maximum) value of the respective player type.

52 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

Table 4.16: The parameter differences of heterogeneous players
Parameter Description
PlayerSpeedMax maximum speed
StaminaIncMax Amount of stamina recovered in one step
PlayerDecay Player speed decay rate
InertiaMoment Player inertia force when moving
DashPowerRate Dash acceleration rate
PlayerSize Player size
KickableMargin Kickable area radius
KickRand The amount of noise added to the kick
ExtraStamina Extra stamina available when stamina is exhausted
EffortMax Maximum value of the player’s effort amount
EffortMin The minimum amount of effort for the player
CatchAreaLengthStretch Streach Length to Catch
KickPowerRate Kick Power Rate
FoulDetectProbability Probability that the referee will take the foul
UnumFarLength If dist less than unum_far_length, then both uniform number and team name are

visible
UnumTooFarLength If dist more than unum_too_far_length, then the uniform number is not visible
TeamFarLength If dist less than team_far_length, then the team name is visible
TeamTooFarLength If dist more than team_too_far_length, then the team name is not visible.
PlayerMaxObservation-
Length

If dist more than player_max_observation_length, then the player is not visible.

BallVelFarLength If dist less than ball_vel_far_length, then ball vel is visible
BallVelTooFarLength If dist more than ball_vel_too_far_length, then ball vel is not visible
BallMaxObservationLength If dist more than ball_max_observation_length, then the ball is not visible.
FlagChgFarLength If dist less than flag_chg_far_length, then the flag dist change is sent.
FlagChgTooFarLength If dist less than flag_chg_too_far_length, then the flag dist change is not sent.
FlagMaxObservationLength If dist more than flag_max_observation_length, then the flag is not visible.

Heterogeneous player parameters given for each match are different. Therefore, each agent does not necessarily have
the parameters needed to implement the tactics. Whatever the situation, you need a way to choose the best combination
of heterogeneous players.

Table 4.17: Parameter for substitutions and heterogeneous player types
Parameter in player.conf Value
player_types 18
subs_max 3
pt_max 1

4.8 Referee Model

The Automated Referee sends messages to the players, so that players know the actual play mode of the game. The
rules and the behavior for the automated referee are described in Sec. Kick-Off . Players receive the referee messages
as hear messages. A player can hear referee messages in every situation independent of the number of messages the
player heard from other players.

4.8. Referee Model 53

The RoboCup Soccer Simulator Users Manual

4.8.1 Play Modes and referee messages

The change of the play mode is announced by the referee. Additionally, there are some referee messages announcing
events like a goal or a foul. If you have a look into the server source code, you will notice some additional play modes
that are currently not used. Both play modes and referee messages are announced using (referee String), where String
is the respective play mode or message string. The play modes are listed in Table 4.18, for the messages see Table 4.19.

Table 4.18: Play Modes
Play
Mode

tc sub-
se-
quent
play
mode

comment

be-
fore_kick_off

0 kick_off_Sideat the beginning of a half

play_on during normal play
time_over End of the game
kick_off_Side announce start of play (after pressing the Kick Off button)
kick_in_Side
free_kick_Side
cor-
ner_kick_Side

when the ball goes out of play over the goal line, without a goal being scored and having last
been touched by a member of the defending team.

goal_kick_*Side*play_onplay mode changes once the ball leaves the penalty area
goal_*Side* currently unused
drop_ball0 play_on
off-
side_Side

30 free_kick_SideAn offside player who is closer to the opponent’s goal when his teammate hits the ball, both
in front of the ball and in front of the last player of the opposing team. The offside rule pre-
vents players from concentrating in front of the opponent’s goal, as no player can stand near
the opponent’s goal and have a chance to score by waiting for the ball, and the possibility of
sending long passes close to the opponent’s goal is limited. In this way, defenders can distance
themselves from their own goal and participate more during the game.

penalty_kick_Side When the game ends in a draw of 6,000 cycles and overtime, the winner will be determined by
penalty kicks.

foul_charge_Side Pushing the opposing player
back_pass_Side A goalkeeper is not allowed to catch the ball inside his own penalty area if a teammate sends

the ball to him. The opposing team will receive an indirect free-kick at the point of touch if the
goalkeeper makes the mistake.

free_kick_fault_SidePlayers are not allowd to kick the ball to themselves after a free kick. If a player does kick the
ball to themselves after a free kick, a free kick is awarded to the opposing team at the point that
the second kick occurred.

in-
di-
rect_free_kick_Side

In a direct free kick, the player can shoot the ball directly towards the goal, but an indirect free
kick cannot and must pass the ball to a teammate.

ille-
gal_defense_Side

where Side is either the character l or r, OSide means opponent’s side. tc is the time (in number of cycles) until the
subsequent play mode will be announced

54 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

Table 4.19: Referee Messages
Message tc subsequent

play mode
comment

goal_*Side*_*n* 50 kick_off_*OSide* announce the n th goal for a team
foul_*Side* 0 free_kick_*OSide* announce a foul
yel-
low_card_*Side*_*Unum*

0 announce an yellow card information

red_card_*Side*_*Unum*0 announce a red card information
goalie_catch_ball_*Side*0 free_kick_*OSide*
time_up_without_a_team0 time_over sent if there was no opponent until the end of the second half
time_up 0 time_over sent once the game is over (if the time is second half and the

scores for each team are different)
half_time 0 before_kick_off
time_extended 0 before_kick_off

where Side is either the character l or r, OSide means opponent’s side. tc is the time (in number of cycles) until the
subsequent play mode will be announced.

4.8.2 Time Referee

TODO

• Judges the game time

• server::half_time

• [12.1.3] server::extra_half_time

• [13.0.0] change a length of overtime

4.8.3 Offside Referee

The offside referee is a module that observes the field, particularly passes, to check whether the offside foul happens.
This module determines offside lines every cycle, then specifies several candidates from players which would result in
an offside if they receive a pass.

The referee is configurable by some parameters in server.conf file. some useful parameters are explained below.

server::use_offside = true // true: enable, false: disable

This parameter determines whether the offside referee is enabled or disabled.

server::offside_active_area_size = 2.5

This parameter determines the radius of an area around a candidate pass receiver. If the ball enters the area and the
candidate performs a kick or tackle command, the offside foul is called. Offside is also called if the candidate collides
with the ball.

offside_kick_margin = 9.15

This parameter determines the radius of area that every player in the team which has done offside foul must stay out
when the other team wants to free-kick. If there is a player in that area, server moves them out of that.

4.8. Referee Model 55

The RoboCup Soccer Simulator Users Manual

56 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

4.8.4 FreeKick Referee

Free kicks are detected automatically by the soccer server in many relevant cases. The Free kick referee is a module
that observes the play mode, to check whether the free kick foul happens and what should teams do. Some methods
are explained below.

void FreeKickRef::kickTaken

This method is executed when foul has occurred by the player. This method checks whether the kick is correctly done
or not.

void FreeKickRef::tackleTaken

This method is executed when a tackle foul has occurred by the player

void FreeKickRef::ballTouched

This method checks whether the ball has been touched by an unauthorized player.

void FreeKickRef::analyse

This method checks the game play mode and removes unauthorized players from the foul area due to the situation.

void FreeKickRef::playModeChange

This method provides the free kick conditions according to the game mode and occurs when the mode has changed.

void FreeKickRef::callFreeKickFault

This method is for calling the free kick and receives the side and the foul location as inputs.

bool FreeKickRef::goalKick

If the right or left goal kick has occurred, the output value of this method is true.

bool FreeKickRef::freeKick

If foul occurs, the output value of this method is true.

bool FreeKickRef::ballStopped

If the ball stops moving, the output value of this method is true.

bool FreeKickRef::tooManyGoalKicks

If the value of goal kick count is greater than maxGoalKicks the output value of this method is true.

void FreeKickRef::placePlayersForGoalkick

This method sends the opponent players out of the penalty area if a goal kick occurs.

4.8. Referee Model 57

The RoboCup Soccer Simulator Users Manual

4.8.5 Touch Referee

TODO

• Judge the goal

• [14.0.0] golden goal option, server::golden_goal

Checking for goals, out of bounds and within penalty area no complies with FIFA regulations. For a goal to be scored
the ball must be totally within the goal - i.e.

|𝑏𝑎𝑙𝑙.𝑥| > 𝐹𝐼𝐸𝐿𝐷_𝐿𝐸𝑁𝐺𝑇𝐻 · 0.5 + 𝑏𝑎𝑙𝑙_𝑟𝑎𝑑𝑖𝑢𝑠

Similarly the ball must be completely out of the pitch before it is considered out - i.e

|𝑏𝑎𝑙𝑙.𝑥| > 𝐹𝐼𝐸𝐿𝐷_𝐿𝐸𝑁𝐺𝑇𝐻 · 0.5 + 𝑏𝑎𝑙𝑙_𝑟𝑎𝑑𝑖𝑢𝑠 ||
|𝑏𝑎𝑙𝑙.𝑦| > 𝐹𝐼𝐸𝐿𝐷_𝑊𝐼𝐷𝑇𝐻 · 0.5 + 𝑏𝑎𝑙𝑙_𝑟𝑎𝑑𝑖𝑢𝑠

Lastly the ball is within the penalty area (and thus catchable) if the ball is at least partially within the penalty area - i.e.

|𝑏𝑎𝑙𝑙.𝑦| <= 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 _𝑊𝐼𝐷𝑇𝐻 · 0.5 + 𝑏𝑎𝑙𝑙_𝑟𝑎𝑑𝑖𝑢𝑠 &&

|𝑏𝑎𝑙𝑙.𝑥| <= 𝐹𝐼𝐸𝐿𝐷_𝐿𝐸𝑁𝐺𝑇𝐻 · 0.5 + 𝑏𝑎𝑙𝑙_𝑟𝑎𝑑𝑖𝑢𝑠 &&

|𝑏𝑎𝑙𝑙.𝑥| >= 𝐹𝐼𝐸𝐿𝐷_𝐿𝐸𝑁𝐺𝑇𝐻 · 0.5 − (𝑃𝐸𝑁𝐴𝐿𝑇𝑌 _𝐿𝐸𝑁𝐺𝑇𝐻 · 0.5 + 𝑏𝑎𝑙𝑙_𝑟𝑎𝑑𝑖𝑢𝑠)

4.8.6 Catch Referee

TODO

• Judges the goalie’s catch behavior

• [12.0.0 pre-20071217] change the rules of back pass and catch fault

• [12.0.0 pre-20071217] change the rule of goalies’ catch vioration

• [12.1.1] fix the back pass rule

4.8.7 Foul Referee

TODO

• Judges the foul

• [14.0.0] foul model and intentional foul option

• [14.0.0] foul information in sense_body/fullstate

• [14.0.0] red/yellow card message

If an intentional and dangerous foul is detected, the referee penalizes the player and sends the yellow/red card message
to clients. The message format is similar to playmode messages. Side and uniform number information of penalized
player are appended to the card message:

(referee TIME yellow_card_[lr]_[1-11]) or (referee TIME red_card_[lr]_[1-11])

58 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

4.8.8 Ball Stuck Referee

TODO: server::ball_stuck_area. [11.0.0] in NEWS

4.8.9 Illegal Defense Referee

From the server version 16, a new referee module has been added to control the number of defensive players. We have
four new variables in server_param to change the parameters of this referee.

server::illegal_defense_duration = 20

This parameter determines the number of cycles that illegal defense situation would have to remain before calling a
free kick.

server::illegal_defense_number = 0

This parameter determines how many players would need to be in the specified zone before the illegal defense situation
countdown starts. If the value is set to 0, the referee never detects illegal defense situations.

server::illegal_defense_dist_x = 16.5

This parameter determines the distance from the field’s goal lines for detecting defensive players.

server::illegal_defense_width = 40.32

This parameter determines the horizontal distance from the horizontal symmetry line for detecting defensive players.

4.8.10 Keepaway Referee

TODO

• [9.1.0] keepaway mode

4.8.11 Penalty Shootouts Referee

TODO

• [9.3.0] penalty shootouts

• [9.4.0] pen_coach_moves_players

Rules

If defensive players exists within the rectangle defined by illegal_defense_dist_x and illegal_defense_width, they are
marked as an illegal state. if the number of markerd players becomes greater than or equal to illegal_defense_number
and this continues for illegal_defense_duration cycles, then play mode will change to free_kick_[lr] for the offensive
team.

A team is considered as the offensive team when their player is the latest player to kick the ball. If both teams perform
a kick on the same cycle, neither team is considered as offensive, and the countdown resets. The above rule is applied
to the tackle action too. The change of play mode does not affect cycles of illegal defense situations.

4.8. Referee Model 59

The RoboCup Soccer Simulator Users Manual

4.9 The Soccer Simulation

In Sec. 4.4, we gave a description on how the objects are moved with respect to their accelerations and velocities. In this
section, we describe at what point in time acceleration and velocities are applied to the objects during the simulation.

4.9.1 Description of the simulation algorithm

In Soccer Server, time is updated in discrete steps. A simulation step is 100ms. During each simulation step, objects (i.e.
players and the ball) stay on their positions. If players decide to act within a step, actions are applied to the players and
the ball at the transition from one simulation cycle to the next. Depending on the play mode, not all actions are allowed
for the players (for instance in ‘before kick off’ mode, players can turn and move, but they cannot dash), so only allowed
actions will be applied and take effect. If during a step, several players kick the ball, all the kicks are applied to the ball
and a resulting acceleration is calculated. If the resulting acceleration is larger than the maximum acceleration for the
ball, acceleration is normalized to its maximum value. After moving the objects, the server checks for collisions and
updates velocities if a collision occurred (see also Sec. 4.4.2). When applying accelerations and velocities to the objects,
the order of application is randomized. After changing objects positions, and updating velocities and accelerations, the
automated referee checks the situation and changes the play mode or the object positions, if necessary. Changes to the
play mode are announced immediately. Finally, stamina for each player is updated.

In Soccer Server, time is updated in discrete steps. A simulation step is 100ms. During each simulation step, objects
(i.e. players and the ball) stay on their positions. If players decide to act within a step, actions are applied to the players
and the ball at the transition from one simulation cycle to the next. Depending on the play mode, not all actions are
allowed for the players (for instance in before_kick_off mode, players can turn and move, but they cannot dash),
so only allowed actions will be applied and take effect.

If during a step, several players kick the ball, all the kicks are applied to the ball and a resulting acceleration is calculated.
If the resulting acceleration is larger than the maximum acceleration for the ball, acceleration is normalized to its
maximum value. After moving the objects, the server checks for collisions and updates velocities if a collision occurred
(see also Sec. 4.4.2).

When applying accelerations and velocities to the objects, the order of application is randomized. After changing
objects positions, and updating velocities and accelerations, the automated referee checks the situation and changes the
play mode or the object positions, if necessary. Changes to the play mode are announced immediately. Finally, stamina
for each player is updated.

4.9.2 Keepaway Mode

TODO: [9.1.0] in NEWS

4.10 Using Soccerserver

To start the server either type:

./rcssserver

from the directory containing the executable or:

rcssserver

if you installed the executables in your PATH.

60 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

4.10.1 Configuration Files

rcssserver will look in your home directory for the configuration files:

• .rcssserver/server.conf

• .rcssserver/player.conf

• .rcssserver/CSVSaver.conf

• .rcssserver-landmark.xml

If .conf files do not exist, they will be created and populated with default values.

You can include additional configuration files by using the include=FILE option to rcssserver.

TOOD

• [8.01] landmark reader

• [13.0.0] RCSS_CONF_DIR

4.10.2 Recording Command Log

TODO: description about .rcl file

4.10.3 Automatic Mode

TODO: [9.0.2]

4.10.4 Anonyous Mode

Anonymous Mode,which was introduced in server version 16.0.0 allows the server to hide team names from opponents.
There are two parameters inside server.conf, which allow each side’s name to be set to a fixed string. If the parameter
is empty, the real name of the team will be reported to the opponent.

Table 4.20: Server parameters for Anonymous mode
Parameter Description
server::fixed_teamname_l Fixed name of the left team, which is sent to the right team. Leave empty for real name.
server::fixed_teamname_r Fixed name of the left team, which is sent to the right team. Leave empty for real name.

4.10.5 Synchronous Mode

TODO: [7.11] in ChangeLog

4.10. Using Soccerserver 61

The RoboCup Soccer Simulator Users Manual

4.10.6 Result Saver

TODO

• [9.4.0] StdOutSaver, MySQLSaver

• [9.4.3] CSVSaver

4.10.7 The Soccerserver Parameters

Table 4.21: Parameters adjustable in server.conf

Name Current
Value in
server.
conf

Description

version ‘16.0.1’ soccer server version
catch_ban_cycle 5 goalies cannot execute the next catch until this

cycle has passed after the successful catch.
clang_win_size 300 time window which controls how many mes-

sages can be sent (coach language)
clang_advice_win 1 number of advice messages per window
clang_define_win 1 number of define messages per window
clang_del_win 1 number of del messages per window
clang_info_win 1 number of info messages per window
clang_mess_delay 50 delay between receipt of message and send to

players
clang_mess_per_cycle 1 maximum number of coach messages sent per

cycle
clang_meta_win 1 number of meta messages per window
clang_rule_win 1 number of rule messages per window
clang_win_size 1 The length of clang message window
coach_port 6001 (offine) coach port
connect_wait 300 maximum cycle to wait for client connections in

automatic mode
drop_ball_time 100 number of cycles to wait until dropping the ball

automatically
extra_half_time 100 length of a half time of extra halves in seconds
foul_cycles 5 idle cycles of foul charged players
freeform_send_period 20 online coaches can send a freeform message dur-

ing this period after the waiting period
freeform_wait_period 600 online coaches can send a freeform message after

waiting this period
game_log_compression 0 compression level of game log file
game_log_version 5 version of game log format
game_over_wait 100 maximum cycle to wait for server termination in

automatic mode
goalie_max_moves 2 goalie max. moves after a catch
half_time 300 length of a half time in seconds
hear_decay 1 value that reduces the auditory capacity when re-

ceiving an auditory message
continues on next page

62 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

Table 4.21 – continued from previous page
Name Current

Value in
server.
conf

Description

hear_inc 1 value that increases the auditory capacity when
the game cycle is updated

hear_max 1 maximum value of audiotory capacity
illegal_defense_duration 20 threshold count to detect illegal defense behavior
illegal_defense_number 0 number of players judged to be illegal illegal de-

fense behavior
keepaway_start -1

automatic referee changes playmode to
play_on after this

seconds elapsed

kick_off_wait 100 maximum cycle to wait kick-off in automatic
mode

max_goal_kicks 3 (actually no effect)
max_monitors -1 max number of monitor connections
nr_extra_halfs 2 number of extra halves in a game
nr_normal_halfs 2 number of normal halves in a game
olcoach_port 6002 online coach port
pen_before_setup_wait 10 max waiting cycles in penalty_miss_[lr] or

penalty_score_[lr]
pen_max_extra_kicks 5 max extra kick trials in penalty shootouts
pen_nr_kicks 5 number of normal kick trials in penalty

shootouts
pen_ready_wait 10 max waiting cycles in penalty_ready_[lr]
pen_setup_wait 70 max waiting cycles in penalty_setup_[lr]
pen_taken_wait 150 max cycles in penalty_taken_[lr]
point_to_ban 5 players cannot execute the next pointto until this

cycle has passed
point_to_duration 20 point to continues automatically for up to this cy-

cle
port 6000 player port number
recv_step 10 time step of acception of commands [unit: msec]
say_coach_cnt_max 128 upper limit of the number of online coach’s mes-

sage
say_coach_msg_size 128 upper limit of length of online coach’s message
say_msg_size 10 string size of say message [unit:byte]
send_step 150 time step of visual information [unit:msec]
send_vi_step 100 interval of online coach’s look
sense_body_step 100 time step of player’s body information

[unit:msec]
simulator_step 100 time step of simulation [unit:msec]
slow_down_factor 1 coefficient that slows down simulation time
start_goal_l 0 initial score of the left team
start_goal_r 0 initial score of the right team
synch_micro_sleep 1 sleep time to wait clients in synch mode

[unit:msec]
continues on next page

4.10. Using Soccerserver 63

The RoboCup Soccer Simulator Users Manual

Table 4.21 – continued from previous page
Name Current

Value in
server.
conf

Description

synch_offset 60 offset time from the beginning of the cycle to
send think message [unit:msec]

synch_see_offset 0 offset time from the beginning of the cycle to
send see message if players uses synch_see mode
[unit:msec]

tackle_cycles 10 idle cycles of the players that executed tackle
text_log_compression 0 compression level of text log file
auto_mode false enable auto start of the match
back_passes true enable back pass rule
coach false
coach_w_referee false allows trainer with automatic referee
forbid_kick_off_offside true forbid kick off offside
free_kick_faults true enable free kick fault rule
fullstate_l false enable full state information for left team
fullstate_r false enable full state information for right team
game_log_dated true flag to write date in game log name
game_log_fixed false enable fixed name in game log
game_logging true flag for game logging
golden_goal false flag for the golden goal rule
keepaway false flag for keepaway mode
keepaway_log_dated true flag to write date in keep away log name
keepaway_log_fixed false enable fixed name in keep away log
keepaway_logging true enable logging in keep away mode
log_times false
old_coach_hear false
pen_allow_mult_kicks true Turn on to allow dribbling in penalty shootouts
pen_coach_moves_players true Turn on to have the server automatically position

players for peanlty shootouts
pen_random_winner false enable random winner in penalties
penalty_shootouts true Set to true to enable penalty shootouts after nor-

mal time and extra time if the game is drawn.
profile false
proper_goal_kicks false
record_messages false enables recording message to game log file
send_comms false enables sending message to monitors
synch_mode false enables synchronous mode
team_actuator_noise false flag whether to use team specic actuator noise
text_log_dated true flag to write date in text log name
text_log_fixed false enable fixed name in text log
text_logging true flag for recording client command log
use_offside true flag for using off side rule
verbose false flag for verbose mode
wind_none false wind factor is none
wind_random false wind factor is random
audio_cut_dist 50.0 audio cut off distance
back_dash_rate 0.6 dash power date for the backward dash
ball_accel_max 2.7 max. ball acceleration

continues on next page

64 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

Table 4.21 – continued from previous page
Name Current

Value in
server.
conf

Description

ball_decay 0.94 ball decay
ball_rand 0.05 noise parameter for the ball movement
ball_size 0.085 ball size
ball_speed_max 3.0 max. ball velocity
ball_stuck_area 3.0 threshold of distance to detect a stucked situation
ball_weight 0.2 (not used) weight of the ball
catch_probability 1.0 default goalie catch probability
catchable_area_l 1.2 goalie’s defalut catchable area length
catchable_area_w 1.0 goalie’s catchable area width
ckick_margin 1.0 corner kick margin
control_radius 2.0 (not used)
dash_angle_step 1.0 minimum angle step for dash command
dash_power_rate 0.006 default dash power rate
effort_dec 0.005 dash effort decrement
effort_dec_thr 0.3 player dash effort decrement threshold
effort_inc 0.01 dash effort increment
effort_inc_thr 0.6 dash effort increment treshold
effort_init 1.0 default effort value
effort_min 0.6 min. player dash effort
extra_stamina 50.0 default extra stamina
foul_detect_probability 0.5 default foul detect probability
foul_exponent 10.0
goal_width 14.02 goal width
illegal_defense_dist_x 16.5
illegal_defense_width 40.32
inertia_moment 5.0 default intertia moment for turn
keepaway_length 20 length of rectangle in keep away mode
keepaway_width 20 width of rectangle in keep away mode
kick_power_rate 0.027 kick power rate
kick_rand 0.1 base parameter for noise added directly to kicks
kick_rand_factor_l 1.0 factor to multiply kick rand for left team
kick_rand_factor_r 1.0 factor to multiply kick rand for right team
kickable_margin 0.7 default kickable margin
max_back_tackle_power 0.0 maximum back tackle power
max_dash_angle 180.0 maximum dash angle relative to player’s body

angle
max_dash_power 100.0 maximum dash acceleration power
max_tackle_power 100.0 maximum tackle power
maxmoment 180.0 max. moment
maxneckang 90.0 max. neck angle
maxneckmoment 180.0 max. neck moment
maxpower 100.0 max kick power
min_dash_angle -180.0 minimum dash angle relative to player’s body

angle
min_dash_power -100.0 minimum dash acceleration power
minmoment -180.0 max. moment

continues on next page

4.10. Using Soccerserver 65

The RoboCup Soccer Simulator Users Manual

Table 4.21 – continued from previous page
Name Current

Value in
server.
conf

Description

minneckang -90.0 max. neck angle
minneckmoment -180.0 max. neck moment
minpower -100 min kick power
offside_active_area_size 2.5

if offside marked players try to kick/tackle
command and their distance from the ball is
less than this value, referee detects

offside

offside_kick_margin 9.15
offside_kick_margin 9.15
pen_dist_x 42.5
pen_max_goalie_dist_x 14
player_accel_max 1.0 max. player acceleration
player_decay 0.4 default player decay
player_rand 0.1 players’ movement noise parameter
player_size 0.3 player radius
player_speed_max 1.05 maxium speed of players
player_speed_max_min 0.75 The minumum value of the maximum speed of

players
player_weight 60.0 (not used) player weight
prand_factor_l 1 factor to multiply prand for left team
prand_factor_r 1 factor to multiply prand for right team
quantize_step 0.1 quantize step of distance for movable objects
quantize_step_l 0.01 quantize step of distance for landmarks
recover_dec 0.002 player recovery decrement
recover_dec_thr 0.3 player recovery decrement threshold
recover_init 1.0 player’s initial recovery value
red_card_probability 0.0 probability of red card in a foul
side_dash_rate 0.4 factor to multiply effective power when side dash

is performed
slowness_on_top_for_left_team 1
slowness_on_top_for_right_team 1
stamina_capacity 130600 max. recovery capacity of each player’s stamina
stamina_inc_max 45.0 default max. player stamina increment
stamina_max 8000.0 max. player stamina
stopped_ball_vel 0.01 threshold value to detect ball is moving or not
tackle_back_dist 0.0 max. x distance between player and ball that

player may perform a tackle when ball is behind
the player

tackle_dist 2.0 max. x distance between player and ball that
player may perform a tackle when ball is in front
of the player

tackle_exponent 6.0 exponent used in tackle failure probability equa-
tion

tackle_power_rate 0.027 tackle power rate
tackle_rand_factor 2.0

continues on next page

66 Chapter 4. Soccer Server

The RoboCup Soccer Simulator Users Manual

Table 4.21 – continued from previous page
Name Current

Value in
server.
conf

Description

tackle_width 1.25 max. y distance between player and ball that
player may perform a tackle when ball is in front
of the player

visible_angle 90.0 visible angle
visible_distance 3.0
wind_ang 0.0
wind_dir 0.0 wind direction
wind_force 0.0
wind_rand 0.0
coach_msg_file ‘’
fixed_teamname_l ‘’ fixed name of left team’s opponent
fixed_teamname_r ‘’ fixed name of right team’s opponent
game_log_dir ‘./’ path to game log directory
game_log_fixed_name ‘rcssserver’ fixed name of game log
keepaway_log_dir ‘./’ path to keep away log directory
keepaway_log_fixed_name ‘rcssserver’ fixed name of keep away log
landmark_file ‘~/.rcssserver-

landmark.xml’
log_date_format ‘%Y%m%d%H%M%S-

’
date format in game log

team_l_start ‘’ path to start script of left team
team_r_start ‘’ path to start script of right team
text_log_dir ‘./’ path to text log directory
text_log_fixed_name ‘’ fixed name of text log

Table 4.22: Parameters adjustable in player.conf

Name Current
Value in
player.
conf

Description

version ‘16.0.1’ soccer server version
player_types 18 number of random player types generated at

match startup
pt_max 1 number of times that online coach can substitute

a player to another player of the same type
random_seed -1 seed to generate heterogeneous players parame-

ters of a match if it is non zero
subs_max 3 maximum number of substitutions in a match
allow_mult_default_type false
catchable_area_l_stretch_max 1.3 defines the upper bound of player’s catch-

able_area_l_stretch
catchable_area_l_stretch_min 1 defines the lower bound of player’s catch-

able_area_l_stretch
dash_power_rate_delta_max 0 defines the upper bound of player’s dash power

rate when added to default dash power rate
continues on next page

4.10. Using Soccerserver 67

The RoboCup Soccer Simulator Users Manual

Table 4.22 – continued from previous page
Name Current

Value in
player.
conf

Description

dash_power_rate_delta_min 0 defines the lower bound of player’s dash power
rate when added to default dash power rate

effort_max_delta_factor -0.004 controls the upper bound of player’s effort
amount

effort_min_delta_factor -0.004 controls the lower bound of player’s effort
amount

extra_stamina_delta_max 50 defines the upper bound of player’s extra stamina
when added to default extra stamina

extra_stamina_delta_min 0 defines the lower bound of player’s extra stamina
when added to default extra stamina

foul_detect_probability_delta_factor 0 defines the range of heterogeneous player’s foul
detect probability

inertia_moment_delta_factor 25 factor to control the length of inertia moment
delta interval

kick_power_rate_delta_max 0 defines the upper bound of player’s kick power
rate when added to default kick power rate

kick_power_rate_delta_min 0 defines the lower bound of player’s kick power
rate when added to default kick power rate

kick_rand_delta_factor 1
kickable_margin_delta_max 0.1 defines the upper bound of player’s kickable mar-

gin when added to default kickable margin
kickable_margin_delta_min -0.1 defines the lower bound of player’s kickable mar-

gin when added to default kickable margin
new_dash_power_rate_delta_max 0.0008
new_dash_power_rate_delta_min -0.0012
new_stamina_inc_max_delta_factor -6000
player_decay_delta_max 0.1 defines the upper bound of inertia moment delta

when multiplied by inertia moment delta factor
player_decay_delta_min -0.1 defines the lower bound of inertia moment delta

when multiplied by inertia moment delta factor
player_size_delta_factor -100 controls the range of heterogeneous player’s size
player_speed_max_delta_max 0 defines the upper bound of player’s maximum

speed when added to server::player_speed_max
player_speed_max_delta_min 0 defines the lower bound of player’s maximum

speed when added to server::player_speed_max
stamina_inc_max_delta_factor 0

Table 4.23: Parameters adjustable in CSVSaver.conf

Name Current
Value in
CSVSaver.
conf

Description

version ‘16.0.1’ soccer server version
save false flag to save matches result in a file
filename ‘rc-

ssserver.csv’
file to save the results to. If this file does not exist
it will be created. Otherwise, the results will be
appended to the end.

68 Chapter 4. Soccer Server

CHAPTER

FIVE

SOCCER MONITOR

5.1 Introduction

Soccer monitor provides a visual interface. Using the monitor we can watch a game vividly and control the proceeding
of the game. .. By cooperating with logplayer, soccermonitor can replay games, so that it .. becomes very convenient
to analyze and debug clients.

5.2 Getting started

To connect the soccer monitor with the soccer server, you can use the command following:

$ rcssmonitor

By specifying the options, you can modify the parameters of soccer monitor instead of modifying monitor configuration
file. You can find available options by:

$ rcssmonitor --help

If you use script rcsoccersim to start the server, a monitor will be automatically started and connected with the server:

$ rcsoccersim

5.2.1 Total number of monitor clients

By default, there is no restriction on the number of monitor clients. You can restrict the number of monitor connections
by changing the value of server::max_monitor parameter. This feature is useful when you want to reduce the load
by limiting arbitrary connections from others.

If the value of server::max_monitor is negative integer (default:-1), no restriction. If the value is positive integer,
the total number of monitor clients that can connect to the rcssserver is restricted within that number.

Suppose a new monitor client tries to connect to the server after the number of connected monitors has reached the
server limit (max_monitor). In that case, the server will refuse the connection and send (error no_more_monitor)
back to the monitor’s client.

69

The RoboCup Soccer Simulator Users Manual

5.3 Communication from Server to Monitor

Soccer monitor and rcssserver are connected via UDP/IP on port 6000 (default). When the server is connected with the
monitor, it will send information to the monitor every cycle. rcssserver-15 provides four different formats (version 1 ~ 4).
The server will decide which format is used according to the initial command sent by the monitor (see Communication
from Monitor to Server). The detailed data structure information can be found in appendix sec-appendixmonitorstructs.

5.3.1 Version 1

rcssserver sends dispinfo_t structs to the soccer monitor. dispinfo_t contains a union with three different types of
information:

• showinfo_t: information needed to draw the scene

• msginfo_t : contains the messages from the players and the referee shown in the bottom windows

• drawinfo_t: information for monitor to draw circles, lines or points (not used by the server)

The size of dispinfo_t is determined by its largest subpart (msg) and is 2052 bytes (the union causes some extra network
load and may be changed in future versions). In order to keep compatibility between different platforms, values in
dispinfo_t are represented by network byte order. Which information is included is determined by the mode information.
NO_INFO indicates no valid info contained (never sent by the server), BLANK_MODE tells the monitor to show a
blank screen (used by logplayer) (see rcssserver-*/src/types.h):

NO_INFO 0
SHOW_MODE 1
MSG_MODE 2
DRAW_MODE 3
BLANK_MODE 4

Following is a description of these structs and the ones contained:

Showinfo

A showinfo_t struct is passed every cycle (100 ms) to the monitor and contains the state and positions of players and
the ball:

typedef struct {
char pmode ;
team_t team[2] ;
pos_t pos[MAX_PLAYER * 2 + 1] ;
short time ;

} showinfo_t ;

• pmode: currently active playmode of the game (see rcssserver-*/src/types.h):

PM_Null,
PM_BeforeKickOff,
PM_TimeOver,
PM_PlayOn,
PM_KickOff_Left,
PM_KickOff_Right,
PM_KickIn_Left,
PM_KickIn_Right,

(continues on next page)

70 Chapter 5. Soccer Monitor

The RoboCup Soccer Simulator Users Manual

(continued from previous page)

PM_FreeKick_Left,
PM_FreeKick_Right,
PM_CornerKick_Left,
PM_CornerKick_Right,
PM_GoalKick_Left,
PM_GoalKick_Right,
PM_AfterGoal_Left,
PM_AfterGoal_Right,
PM_Drop_Ball,
PM_OffSide_Left,
PM_OffSide_Right,
PM_PK_Left,
PM_PK_Right,
PM_FirstHalfOver,
PM_Pause,
PM_Human,
PM_Foul_Charge_Left,
PM_Foul_Charge_Right,
PM_Foul_Push_Left,
PM_Foul_Push_Right,
PM_Foul_MultipleAttacker_Left,
PM_Foul_MultipleAttacker_Right,
PM_Foul_BallOut_Left,
PM_Foul_BallOut_Right,
PM_Back_Pass_Left,
PM_Back_Pass_Right,
PM_Free_Kick_Fault_Left,
PM_Free_Kick_Fault_Right,
PM_CatchFault_Left,
PM_CatchFault_Right,
PM_IndFreeKick_Left,
PM_IndFreeKick_Right,
PM_PenaltySetup_Left,
PM_PenaltySetup_Right,
PM_PenaltyReady_Left,
PM_PenaltyReady_Right,
PM_PenaltyTaken_Left,
PM_PenaltyTaken_Right,
PM_PenaltyMiss_Left,
PM_PenaltyMiss_Right,
PM_PenaltyScore_Left,
PM_PenaltyScore_Right,

PM_Illegal_Defense_Left,
PM_Illegal_Defense_Right,
PM_MAX

• team: information about the teams. Index 0 is for team playing from left to right:

typedef struct {
char name[16]; /* name of the team */
short score; /* current score of the team */

} team_t;

5.3. Communication from Server to Monitor 71

The RoboCup Soccer Simulator Users Manual

• pos: position information of ball and players. Index 0 represents the ball, indices 1 to 11 is for team[0] (left to
right) and 12 to 22 for team[1]:

typedef struct {
short enable;
short side;
short unum;
short angle;
short x;
short y;

} pos_t;

• time: current game time.

Values of the elements can be

• enable: state of the object. Players not on the field (and the ball) have state DISABLE. The other bits of enable
allow monitors to draw the state and action of a player more detailed (see rcssserver-*/src/types.h):

DISABLE 0x00000000
STAND 0x00000001
KICK 0x00000002
KICK_FAULT 0x00000004
GOALIE 0x00000008
CATCH 0x00000010
CATCH_FAULT 0x00000020
BALL_TO_PLAYER 0x00000040
PLAYER_TO_BALL 0x00000080
DISCARD 0x00000100
LOST 0x00000200
BALL_COLLIDE 0x00000400
PLAYER_COLLIDE 0x00000800
TACKLE 0x00001000
TACKLE_FAULT 0x00002000
BACK_PASS 0x00004000
FREE_KICK_FAULT 0x00008000
POST_COLLIDE 0x00010000
FOUL_CHARGED 0x00020000
YELLOW_CARD 0x00040000
RED_CARD 0x00080000

ILLEGAL_DEFENSE 0x00100000

• side: side the player is playing on. LEFT means from left to right, NEUTRAL is the ball (rcssserver-
*/src/types.h):

LEFT 1
NEUTRAL 0
RIGHT -1

• unum: uniform number of a player ranging from 1 to 11

• angle: angle the agent is facing ranging from -180 to 180 degrees, where -180 is view to the left side of the
screen, -90 to the top, 0 to the right and 90 to the bottom.

• x, y: position of the ball or player on the screen. (0, 0) is the midpoint of the field, x increases to the right, y
to the bottom of the screen. Values are multiplied by SHOWINFO_SCALE (16) to reduce aliasing, so field size

72 Chapter 5. Soccer Monitor

The RoboCup Soccer Simulator Users Manual

is PITCH_LENGTH * SHOWINFO_SCALE in x direction and PITCH_WIDTH * SHOWINFO_SCALE in y
direction.

Messageinfo

Information containing the messages of players and the referee:

typedef struct {
short board ;
char message[2048] ;

} msginfo_t;

• board: indicates the type of message. A message with type MSG_BOARD is a message of the referee,
LOG_BOARD are messages from and to the players. (rcssserver-*/param.h):

MSG_BOARD 1
LOG_BOARD 2

• message: zero terminated string containing the message.

Drawinfo

Allows to specify information for the monitor to draw circles, lines or points.

5.3.2 Version 2

rcssserver sends dispinfo_t2 structs to the soccer monitor instead of dispinfo_t structs which is used in version 1.
dispinfo_t2 contains a union with five different types of information (the data structures are printed in appendix :ref”sec-
appendixmonitorstructs:

• showinfo_t2: information needed to draw the scene. It includes all information on coordinates and speed of
players and the ball, teamnames, scores, etc.

• msginfo_t : contains the messages from the players and the referee. It also contains information on team’s images
and information on player exchanges.

• team graphic: The team graphic format requires a 256x64 image to be broken up into 8x8 tiles and has the form:

(team_graphic_{l|r} (<X> <Y> "<XPM line>" ... "<XPM line>"))

Where X and Y are the co-ordinates of the 8x8 tile in the complete 256x64 image, starting at 0 and ranging upto
31 and 7 respectively. Each XPM line is a line from the 8x8 xpm tile.

• substitutions: substitutions are now explicitly recorded in the message board in the form:

(change_player_type {l|r} <unum> <player_type>)

• player_type_t: information describing different player’s abilities and tradeoffs

• server_params_t: parameters and configurations of soccerserver

• player_params_t: parameters of players

Which information is contained in the union is determined by the mode field. NO_INFO indicates no valid info con-
tained (never sent by the server). BLANK_MODE tells the monitor to show a blank screen:

5.3. Communication from Server to Monitor 73

The RoboCup Soccer Simulator Users Manual

NO_INFO 0
SHOW_MODE 1
MSG_MODE 2
BLANK_MODE 4
PT_MODE 7
PARAM_MODE 8
PPARAM_MODE 9

5.3.3 Version 3

From the monitor protocol version 3, transferred data are represented by human readable text messages. Each data is
represented by S-expression and sent to monitors as one UDP packet. This protocol is also used for recording the game
log format version 4. Please note that PlayMode and Score in the show type message are separately recorded in the
game log.

Below is a list of data types sent by the version 3 protocol:

• server_param

• player_param

• player_type

• show

• msg

The format of server_param, player_param, and player_type messages are the same as the v8+ format for players and
coaches. The msg type message may contain team_graphic data, as in the version 2 format.

The following table shows the format of other types of messages.

74 Chapter 5. Soccer Monitor

The RoboCup Soccer Simulator Users Manual

From server to monitor

(show Time PlayMode Score Ball *Player*+)
Time ::= simulation cycle of rcssserver
PlayMode ::= (pm PlayModeID)
Score ::= (tm LeftName RightName LeftScore RightScore [PenaltyScore])
PenaltyScore ::= LeftPenaltyScore LeftPenaltyMiss RightPenaltyScore RightPenaltyMiss
Ball ::= ((b) X Y VelX VelY)
Player ::=

((Side Unum) Type State X Y VelX VelY Body Neck [PointX PointY]
(v ViewQuality ViewWidth) (s *Stamina Effort Recovery [Capacity]))
[(f FocusSide FocusUnum)]
(c KickCount DashCount TurnCount CatchCount MoveCount TurnNeckCount
ChangeViewCount)

SayCount TackleCount PointtoCount AttentiontoCount))

(msg Time Board “Message”+)
Time ::= simulation cycle of rcssserver
Board ::= message board type id
Message ::= message string

5.3.4 Version 4

The version 4 protocol is almost same as the version 3. The information of players’ stamina capacity is contained in
each player data of the show type message.

5.4 Communication from Monitor to Server

The monitor can send to the server the following commands (in all commands, <variable> has to be replaced with
proper values):

(dispinit) | (dispinit version <version>)

sent to the server as first message to register as monitor (opposed to a player, that connects on port 6000 as well) .
“(dispinit)” is for information version 1, while “(dispinit version 2)” is for version 2. You can change the version by
setting the according monitor parameter. (See Settings and Parameters)

(dispstart)

sent to start (kick off) a game, start the second half or extended time. Ignored, when the game is already running.

(dispfoul <x> <y> <side>)

sent to indicate a foul situation. x and y are the coordinates of the foul, side is LEFT (1) for a free kick for the left team,
NEUTRAL (0) for a drop ball and RIGHT (-1) for a free kick for the right team.

5.4. Communication from Monitor to Server 75

The RoboCup Soccer Simulator Users Manual

(dispdiscard <side> <unum>)

sent to show a player the red card (kick him out). side can be LEFT or RIGHT, unum is the number of the player (1 -
11).

(dispplayer <side> <unum> <posx> <posy> <ang>)

sent to place player at certain position with certain body angle, side can be LEFT (1) or RIGHT (-1), unum is the
number of the player(1 - 11). Posx and posy indicate the new position of the player, which will be divided by SHOW-
INFO_SCALE. And ang indicate the new angle of a player in degrees. This command is added in the server 7.02.

(compression <level>)

The server supports compression of communication with its clients and monitors (since version 8.03). A monitor can
send the above compression request to the server to start compressed communication. If the server is compiled without
ZLib, the server will respond with (warning compression_unsupported) else <level> is not a number between
0 and 9 inclusive, the server will respond with (error illegal_command_form) else the server will respond with
(ok compression <level>) and all subsequent messages to that client will be compressed at that level, until a
new compression command is received. If a compression level above zero is selected, then the monitor is expected to
compress its commands to the server. Specifying a level of zero turns off compression completely (default).

TODO: [12.0.0 pre-20071217] accept some coach commands from monitor

5.5 How to record and playback a game

To record games, you can call server with the argument:

server::game_logging = true

This parameter can be set in server.conf file. The logfile is recorded under server::game_log_dir directory. The
default logfile name contains the datetime and the result of the game. You can use the fixed file name by using
server::game_log_fixed and server::game_log_fixed_name.

server::game_log_fixed : true
server::game_log_fixed_name : 'rcssserver'

To specify the logfile version, you can call server with the argument:

server::game_log_version [1/2/3/4/5]

or set the parameter in server.conf file:

server::game_log_version : 5

You can replay recorded games using logplayer applications. The latest rcssmonitor (version 16 or later) can work as
a logplayer. To replay logfiles just call rcssmonitor with the logfile name as argument, and then use the buttons on the
window to start, stop, play backward, play stepwise.

76 Chapter 5. Soccer Monitor

The RoboCup Soccer Simulator Users Manual

5.5.1 Version 1 Protocol

Logfiles of version 1 (server versions up to 4.16) are a stream of consecutive dispinfo_t chunks. Due to the structure of
dispinfo_t as a union, a lot of bytes have been wasted leading to impractical logfile sizes. This lead to the introduction
of a new logfile format 2.

5.5.2 Version 2 Protocol

Version 2 logfile protocol tries to avoid redundant or unused data for the price of not having uniform data structs. The
format is as follows:

• head of the file: the head of the file is used to autodetect the version of the logfile. If there is no head, Unix-version
1 is assumed. 3 chars ‘ULG’ : indicating that this is a Unix logfile (to distinguish from Windows format)

• char version : version of the logfile format

• body: the rest of the file contains the data in chunks of the following format:

• short mode: this is the mode part of the dispinfo_t struct (see Version 1 Protocol Version 1)
SHOW_MODE for showinfo_t information MSG_MODE for msginfo_t information

• If mode is SHOW_MODE, a showinfo_t struct is following.

• If mode is MSG_MODE, next bytes are

– short board: containing the board info

– short length: containing the length of the message (including zero terminator)

– string msg: length chars containing the message

Other info such as DRAW_MODE and BLANK_MODE are not saved to log files. There is still room for optimization
of space. The team names could be part of the head of the file and only stored once. The unum part of a player could
be implicitly taken from array indices.

Be aware of, that information chunks in version 2 do not have the same size, so you can not just seek SIZE bytes back
in the stream when playing log files backward. You have to read in the whole file at once or (as is done) have at least
to save stream positions of the showinfo_t chunks to be able to play log files backward.

In order to keep compatibility between different platforms, values are represented by network byte order.

5.5.3 Version 3 Protocol

The version 3 logfile protocol contains player parameter information for heterogenous players and optimizes space.
The format is as follows:

• head of the file: Just like version 2, the file starts with the magic characters ‘ULG’.

• char version : version of the logfile format, i.e. 3

• body: The rest of the file contains shorts that specify which data structures will follow.

– If the short is PM_MODE,

∗ a char specifying the play mode follows. This is only written when the playmode changes.

– If the short is TEAM_MODE,

∗ a team_t struct for the left side and

∗ a team_t struct for the right side follow. Team data is only written if a new team connects or the
score changes.

5.5. How to record and playback a game 77

The RoboCup Soccer Simulator Users Manual

– If the short is SHOW_MODE,

∗ a short_showinfo_t2 struct specifying ball and player positions and states follows.

– If the short is MSG_MODE,

∗ a short specifying the message board,

∗ a short specifying the length of the message,

∗ a string containing the message will follow.

– If the short is PARAM_MODE,

∗ a server_params_t struct specifying the current server parameters follows. This is only written
once at the beginning of the logfile.

– If the short is PPARAM_MODE,

∗ a player_params_t struct specifying the current hetro player parameters. This is only written
once at the beginning of the logfile.

– If the short is PT_MODE,

∗ a player_type_t struct specifying the parameters of a specific player type follows. This is only
written once for each player type at the beginning of the logfile.

Data Conversion:

• Values such as x, y positions are meters multiplied by SHOWINFO_SCALE2.

• Values such as deltax, deltay are meters/cycle multiplied by SHOWINFO_SCALE2.

• Values such as body_angle, head_angle and view_width are in radians multiplied by SHOWINFO_SCALE2.

• Other values such as stamina, effort and recovery have also been multiplied by SHOWINFO_SCALE2.

5.5.4 Version 4 Protocol

The version 4 logfile protocol is a text-based format, that may be readable for humans, adopted in rcssserver version 12
or later. Each line contains one data in S-expression like sensory messages. Its grammar is almost the same as monitor
protocol version 3.

• head of the file: Just like older versions, the file starts with the magic characters ‘ULG’.

• char version : version of the logfile format, i.e. 4

• new line

• body: In the rest of the file, one of the following data is recorded on each line:

– server_param

– player_param

– player_type

– msg

– playmode

– team

– show

msg may contain various string data, such as team_graphic, the result of the game, and so on. Starting with the server
version 12.1.0, the game result is recorded using msg data at the end of the game log. See Version 3 in detail.

78 Chapter 5. Soccer Monitor

The RoboCup Soccer Simulator Users Manual

5.5.5 Version 5 Protocol

The version 5 logfile protocol is adopted in rcssserver version 13 or later. Its grammar is almost the same as the version
4 protocol, except adding stamina_capacity information to each player data.

5.5.6 Settings and Parameters

rcssmonitor has various modifiable parameters. You can check available options by calling rcssmonitor with --help
argument:

rcssmonitor --help

Several parameters can be modified from View menu after invoking rcssmonitor.

Some parameters are recorded in ~/.rcssmonitor.conf, and rcssmonitor will reuse them in the next execution. Of
course, you can directly edit this configuration file.

5.6 Team Graphic

TODO

5.7 What’s New

16.0:

• Support illegal defense information.

• Integrate a log player feature.

• Implement a time-shift reply feature.

• Remove a buffering mode.

• Change the default tool kit to Qt5.

• Support CMake.

15.0:

• Support v15 server parameters.

14.1:

• Support an auto reconnection feature.

14.0:

• Reimplement using Qt4.

• Support players’ card status.

• Implement a buffering mode.

13.1:

• Support a team_graphic message.

13.0:

5.6. Team Graphic 79

The RoboCup Soccer Simulator Users Manual

• Support the monitor protocl version 4.

• Support a stamina capacity information.

12.1:

• Support pointto information.

• Implement an auto reconnection feature.

12.0:

• Support the monitor protocl version 3.

11.0.2:

• Support the penalty kick scores.

11.0:

• Support 64bits OS.

10.0:

• Ported to OS X.

9.1:

• Support a keepaway field.

8.03:

• The server supports compressed communication to monitors as described in section 5.4

• Player substitution information is added to the message log

• Team graphics information is added to the message log

7.07:

• The logplayer did not send server param, player param, and player type messages. This has been fixed.

• The monitor would crash on some logfiles because stamina max seemed to be set to 0. The monitor will no
longer crash this way.

Parameter Name Used Value Default Explanation

host localhost Localhost hostname of soccerserver
port 6000 6000 port number of soc-

cerserver
version 2 1 monitor protocol version
length magnify 6.0 6.0 magnification of size of

field
goal width 14.02 7.32 goal width
print log off On flag for display log of com-

munication [on/off]
Log line 6 6 size of log window
Print mark on On flag for display mark on

field [on/off]
mark file name mark.RoboCup.grey.xbm Mark.xbm mark on field use file name
ball_file_name ball-s.xbm Ball.xbm ball use file name
player_widget_size 9.0 1.0 size of player widget

continues on next page

80 Chapter 5. Soccer Monitor

The RoboCup Soccer Simulator Users Manual

Table 5.1 – continued from previous page

Parameter Name Used Value Default Explanation

player_widget_font 5x8 Fixed font(uniform number) of
player widget

Uniform_num_pos_x 2 2 position (X) of player uni-
form number

Uniform_num_pos_y 8 8 position (Y) of player uni-
form number

team_l_color Gold Gold Team_L color
team_r_color Red Red Team_R color
goalie_l_color Green Green Team_L Goalie color
goalie_r_color Purple Purple Team_R Goalie color
neck_l_color Black Black Team_L Neck color
neck_r_color Black Black Team_R Neck color
Goalie_neck_l_color Black Black Team_L Goalie Neck

color
Goalie_neck_r_color Black Black Team_R Goalie Neck

color
status_font 7x14bold Fixed status line font [team

name and score, time,
play_mode]

popup_msg off Off flag for pop up and down
“GOAL!!” and “Offside!”
[on/off]

Goal_label_width 120 120 pop up and down
“GOAL!!” label width

Goal_label_font -adobe-times bold-r---34--
- ----*

Fixed pop up and down
“GOAL!!” label font

Goal_score_width 40 40 pop up and down
“GOAL!!” score width

Goal_score_font -adobe-times bold-r---25--
- ----*

Fixed pop up and down
“GOAL!!” score font

Offside_label_width 120 120 pop up and
down“Offside!” label
width

Offside_label_font -adobe-times bold-r---34--
- ----*

Fixed pop up and down “Off-
side!” label font

eval off Off flag for evaluation mode
redraw_player on Off always redraw player

(needed for RH 5.2)

7.05:

• For quite some time, the logplayer has occasionally “skipped” so that certain cycles were never displayed by
the logplayer. This seems to be caused by the logplayer sending too many UDP packets for the monitor to
receive. Therefore, a new parameter has been added to the logplayer ’message delay interval’. After sending that
many messages, the logplayer sleeps for 1 microsecond, giving the monitor a chance to catch up. This is not
a guaranteed to work, but it seems to help significantly. If you still have a problem with the logplayer/monitor
“skipping”, try reducing message delay interval from it’s default value of 10. Setting message delay interval to
a negative number causes there to be no delay.

• The server used to truncate messages received from the players and coach to 128 characters before recording

5.7. What’s New 81

The RoboCup Soccer Simulator Users Manual

them in the logfile. This has been fixed.

7.04:

• If a client connects with version > 7.0, all angles sent out by the server are rounded instead of truncated (as they
were previously) This makes the error from quantization of angles (i.e. conversion of floats to ints) both uniform
throughout the domain and two sided. This change was also made to all values put into the dispinfo t structure
for the monitors and logfiles.

7.02:

• A new command has been added to the monitor protocol:

(dispplayer side unum posx posy ang)

(contributed by Artur Merke) See Communication from Monitor to Server.

7.00:

• Included the head angle into the display of the soccermonitor. (source contributed by Ken Nguyen)

• Included visualization effect when the player collided with the ball or the player collided with another player.
The monitor displays both cases with a black circle around the player.

• Introduced new monitor protocol version 2. (See 5.5.2 Version 2 and 5.4 Commands From Monitor to Server)

• Introduced new logging protocol version 3. (See 5.5.3 Version 3 Protocol)

• Fixed logging so that the last cycle of a game is logged.

82 Chapter 5. Soccer Monitor

CHAPTER

SIX

SOCCER CLIENT

6.1 Protocols

This section provides a brief overview of the protocol between the Soccer Client and the Soccer Server. More details
on these protocols can be found in the Soccer Server section. Note that the init and reconnect commands should be
send to the player’s UDP port (default: 6000) of the Soccer Server machine, and after the response they should be sent
to the port assigned to your player by the server, in a valid format. The server sends the init response from this port
(refer to section 1.2.1) . All the commands sent to or received from the server are strings of common character and are
in a pair of parenthesis.

6.1.1 Initialization and Reconnection

Every player wanting to connect to the server should introduce himself. This is like a handshake and is done only at
the beginning and optionally in the half time when you want to reconnect.

Initialization

Your client should send an init command to the server in the following format

(init TeamName [(version VerNum)] [(goalie)])

The goalie should include the ”(goalie)” in the init command to be allowed by the server to catch the ball or do another
special goalie action. Note there can only be one or no goalie in each team. (You are not obliged to use a goalie) The
Server welcomes you with a response to your init message in the following format

(init Side UniformNumber PlayMode)

Or by an error message (if there is an error, i.e. you have initiated more than two team, more than 11 players in a team
or more than one goalie in a team)

(error no_more_team_or_player_or_goalie)

Side is your team’s side of play, a character, l(left) or r(right). UniformNumber is the player’s uniform number (the
players of each team are known by their uniform number). PlayMode is a string representing one of the valid play
modes.

If you connect to server with versions 7.00 or higher you will receive additional server parameters, player parameters
and player types information (the last two are related to the hetero players feature). For the exact format refer to the
appendix.

(server_param Parameters . . .)

(player_param Parameters . . .)

(player_type id Parameters . . .)

83

The RoboCup Soccer Simulator Users Manual

Here the hand shaking is finished and your client is known as a valid player.

Reconnection

Reconnection is useful for changing the client program of a player without restarting the game. It can only be done
in a non-PlayOn playing mode (e.g. in the half time). For reconnection you should send a reconnect command in the
following format

(reconnect TeamName UniformNumber)

And you will receive a response in the following format

(reconnect Side PlayMode)

Or one of the following errors

(can’t reconnect)

if the game is in the PlayOn mode.

(error reconnect)

when no client reconnected due to an error. You may also receive the following error if the team name is invalid (error
no_more_team_or_player_or_goalie) Here again if you are connecting to the server with version 7.00 or higher you
will receive additional server parameters, player parameters and player types information.

Disconnection

Before you disconnect, you can send a bye command to the server. This command will remove the player from the
field.

(bye)

There will be no answers from the server.

Version Control

Due to the progressive development of the Soccer Server, new features have been added every year and this resulted
in changes and improvements in the protocols to support these features. In order to keep compatibility with the older
clients and making it easier to work with (specially for researchers), a system has been implemented for the Protocols
Version Control. Every client should tell the server the version of its communication protocol in the init command so
that the server would be able to send the messages in the proper format. But note that although the communication
protocol remains unchanged, the judgment and the simulation rules may change and this will affect the whole game.

6.1.2 Control Commands

During the game each player can send action commands. The server executes the commands at the end of the cycle
and simulates the next cycle regarding the received commands and the previous cycles data.

84 Chapter 6. Soccer Client

The RoboCup Soccer Simulator Users Manual

Body Commands

All the playing and movement behaviors of the player are consisted from a few commands known as body commands
that are presented briefly below. The results of these commands are a little complicated and depend on many simulation
factors. For the details of the execution of each command refer to the Soccer Server Section.

(turn Moment)

The Moment is in degrees from 180 to 180. This command will turn the player’s body direction Moment degrees
relative to the current direction.

(dash Power)

This command accelerates the player in the direction of its body (not direction of the current speed). The Power is
between minpower (used value: 100) and maxpower (used value: 100).

(kick Power Direction)

Accelerates the ball with the given Power in the given Direction. The direction is relative to the the Direction of the
body of the player and the power is again between minpower and maxparam.

(catch Direction)

Goalie special command: Tries to catch the ball in the given Direction relative to its body direction. If the catch is
successful the ball will be in the goalie’s hand until kicked away.

(move X Y)

This command can be executed only before kick off and after a goal. It moves the player to the exact position of X
(between 54 and 54) and Y (between 32 and 32) in one simulation cycle. This is useful for before kick off arrangements.

Note that in each simulation cycle, only one of the above five commands can be executed (i.e. if the client sends more
than one command in a single cycle, one of them will be executed randomly, usually the one received first)

(turn_neck Angle)

This command can be sent (and will be executed) each cycle independently, along with other action commands. The
neck will rotate with the given Angle relative to previous Angle. Note that the resulting neck angle will be between
minneckang (default: 90) and maxneckang (default: 90) relative to the player’s body direction.

Communication Commands

The only way of communication between two players is broadcasting of messages through the say command and hearing
through the hear sensor.

(say Message)

This command broadcasts the Message through the field, and any player near enough (specified with audio_cut_dist,
default: 50.0 meters), with enough hearing capacity will hear the Message. The message is a string of valid characters.

(ok say)

Command succeeded. In case of error there will be the following response from the Server

(error illegal_command_form)

6.1. Protocols 85

The RoboCup Soccer Simulator Users Manual

Misc. Commands

Other commands are usually of two forms:

• Data Request Commands

(sense_body)

Requests the server to send sense body information. Note the server sends sense body information every cycle if
you connect with version 6.00 or higher.

(score)

Request the server to send score information. The server’s reply will be in this format

(score Time OurScore OpponentScore)

• Mode Change Commands

(change_view Width Quality)

Changes the view parameters of the player. Width is one of narrow, normal or wide and Quality is one of high
or low. The amount and detail of the information returned by the visual sensor depends on the width of the view
and the quality. But note that the frequency of sending information also depends on these parameters (e.g. if you
change the quality from high to low, the frequency doubles, and the time between two see sensors will be cut to
half).

6.1.3 Sensor Information

Sensor information are the messages that are sent to all players regularly (e.g. each cycle or each one and half a cycle).
There is no need to send any message to the server to get these information. All the returned information of the sensors
have a time label, indication the cycle number of the game when the data have been sent (indicated by Time). This time
is very useful.

Visual Sensor

Visual Sensor is the most important sensor, and is a little bit complicated. This sensor returns information about the
objects that can be seen from the player’s view (i.e. objects that are in the view angle and not very far).

The main format of the information is

(see Time ObjInfo ObjInfo . . .)

The ObjInfos are of the format below

(ObjName Distance Direction [DistChange DirChange [BodyFacingDir HeadFacingDir]])

or

(ObjName Direction)

Note that the amount of information returned for each object depends on its distance. The more distant the object is
the less information you get. For more detailed information regarding ObjInfo refer to Appendix.

ObjName is in one of the following formats:

(p [TeamName [Unum]])

(b)

(f FlagInfo)

(g Side)

86 Chapter 6. Soccer Client

The RoboCup Soccer Simulator Users Manual

p stands for player, b stands for ball, f stands for flag and g stands for goal. Side is one of l for left or r for right. For
more information on FlagInfo refer to Appendix.

Audio Sensor

Audio sensor returns the messages that can be heard through the field. They may come from the online coach, referee,
or other players.

The format is as follows:

(hear Time Sender Message)

Sender is one of the followings:

• self : when the sender is yourself.

• referee: when the sender is the referee of the game.

• online_coach_l or online_coach_r

• Direction: when the sender is a player other than yourself the relative direction of the sender is returned
instead.

Body Sensor

Body sensor returns all the states of the player such as remaining stamina, view mode and the speed of the player at the
beginning of each cycle:

(sense_body Time (view_mode { high | low } { narrow | normal | wide }) (stamina Stamina Effort) (speed
Speed Angle) (head_angle Angle) (kick Count) (dash Count) (turn Count) (say Count) (turn_neck Count)
(catch Count) (move Count) (change_view Count))

The last eight parameters are counters of the received commands. Use the counters to keep track of lost or delayed
messages.

6.2 How to Create Clients

This section provides a brief description to write a first-step program of soccer client.

6.2.1 Sample Client

The Soccer Server distribution includes a very simple program for soccer clients, called sampleclient. It is under the
”sampleclient” directory of the distribution, and is automatically compiled when you make the Soccer Server. The
sampleclient is not a stand-alone client: It is a simple ‘pipe’ that redirects commands from its standard input to the
server, and information from the server to its standard output. Therefore, nothing happens when users invoke the
sampleclient. The users must type-in commands from keyboards, and read the sensor information displayed on the
terminal. (Actually it is impossible to read sensor information, because the server sends about 17 sensor informations
(see information and sense_body information) per second.) The sampleclient is useful to understand what clients should
do, and what the clients will receive from the server.

How to Use sampleclient Here is a typical usage of the sampleclient.

1. Invoke client under sampleclient directory of the Soccer Server.

% ./client SERVERHOST

6.2. How to Create Clients 87

The RoboCup Soccer Simulator Users Manual

Here, SERVERHOST is a hostname on which Soccer Server is running. Then the program awaits
user input. If the Soccer Server uses an unusual port, for example 6005, instead of the standard port
(6000), the users should use the following form.

% ./client SERVERHOST 6005

2. Type in init command from the keyboard.

(init MYTEAMNAME (version 7))

Here MYTEAMNAME is a team name the users want to use. Then a player appears on the field. In
the same time, the program starts to output the sensor information sent from the server to the terminal.
Here is a typical output

send 6000 : (init foo (version 7))
recv 1567 : (init r 1 before_kick_off)
recv 1567 : (server_param 14.02 5 0.3 0.4 0.1 60 1 1 4000 45 0 0.3 0.5 ...
recv 1567 : (player_param 7 3 3 0 0.2 -100 0 0.2 25 0 0.002 -100 0 0.2 ...
recv 1567 : (player_type 0 1 45 0.4 5 0.006 0.3 0.7 0 0 1 0.6)
recv 1567 : (player_type 1 1.16432 28.5679 0.533438 8.33595 0.00733326 ...
recv 1567 : (player_type 2 1.19861 25.1387 0.437196 5.92991 0.00717675 ...
recv 1567 : (player_type 3 1.04904 40.0956 0.436023 5.90057 0.00631769 ...
recv 1567 : (player_type 4 1.1723 27.7704 0.568306 9.20764 0.00746072 ...
recv 1567 : (player_type 5 1.12561 32.4392 0.402203 5.05509 0.00621539 ...
recv 1567 : (player_type 6 1.02919 42.0812 0.581564 9.53909 0.00688457 ...
recv 1567 : (sense_body 0 (view_mode high normal) (stamina 4000 1) ...
recv 1567 : (see 0 ((g r) 61.6 37) ((f r t) 49.4 3) ((f p r t) 37 27) ...
recv 1567 : (sense_body 0 (view_mode high normal) (stamina 4000 1) ...

The first line, “send 6000 : (init foo (version 7))”, is a report what the client sends to the server. The
second line,”recv 1567 : (init r 1 before_kick_off) is a report of the first response from the server.
Here, the server tells the client that the assigned player is the right side team (r), its uniform number is
1, and the current playmode is before_kick_off. The next 9 lines are server_param and player_param,
which tells various parameters used in the simulation. Finally, the server starts to send the normal
sensor informations, sense_body and see. Because the server sends these sensor information every
100ms or 150ms, the client continues to output the information endlessly.

3. Type in move command to place the player to the initial position. The player
appears on a bench outside of the field. Users need to move it to its initial position by move command like:

(move -10 10)

Then the player moves to the point (-10,10). Because, as mentioned before, the client program outputs
sensor information endlessly, users can not see strings they type in. So, they must type-in commands
blindly.1

4. Click ‘Kick-Off’ button on the Soccer Server. Then the game starts. The users
can see that the time data in each sensor information (the first number of see and sense_body information)
are increasing.

5. After then, users can use any normal command, turn, dash, kick and so on. For
example, users can turn the player to the right by typing:

(turn 90)

The player can dash forward with full power by typing:
1 Users can redirect the output to any file or program. For example, you can redirect it to /dev/null to discard the information by invoking “%

client SERVERHOST > /dev/null”. Then, the users can see the string they type-in.

88 Chapter 6. Soccer Client

The RoboCup Soccer Simulator Users Manual

(dash 100)

When the player is near enough to the ball, it can kick the ball to the left with power 50 by:

(kick 50 -90)

Note again that because of endless sensor output, users must type-in these commands blindly.

Overall Structure of Sample Client

The structure of the sampleclient is simple. The brief process the client does is as follows:

1. Open a UDP socket and connect to the server port. (init_connection())

2. Enter the read-write loop (message_loop), in which the following two processes are executed in
parallel.

• read user’s input from the standard input (usually a keyboard) and send it to the server
(send_message()).

• receive the sensor information from the server (receive_message()) and output it to the standard
output (usually a console).

In order to realize the parallel execution, sampleclient uses the select() function. The function enables to wait for
multiple input from sockets and streams in a single process. When select() is called, it waits until one of the sockets
and streams gets input data, and tells which sockets or streams got the data. For more details of the usage of select(),
please refer to the man page or manual documents.

An important tip in the sampleclient is that the client must change the server’s port number when it receives sensor
informations from the server. This is because the server assign a new port to a client when it receives an init command.
This is done by the following statement in ”client.c” (around line 147)

printf("recv %d : ", ntohs(serv_addr.sin_port));
sock->serv_addr.sin_port = serv_addr.sin_port ;
buf[n] = ’\0’

6.2.2 Simple Clients

In order to develop complete soccer clients, what users must do is to write code of a ‘brain’ part, which performs the
same thing as users do with the sampleclient described in the previous section. In other words, users must write a code
to generate command strings to send to the server based on received sensor information.

Of course it is not a simple task (so that many researchers tackle RoboCup as a research issue), and there are various
ways to implement it. Simply saying, in order to develop player clients, users need to realize the following functions

[Sensing] To analyze sensor information: As shown in the previous section, the server sends various sensor information
in S-expressions. Therefore, a client needs to parse the S-expressions. Then, the client must analyze the information to
get a certain internal representation. For example, the client needs to analyze a visual information to estimate player’s
location and field status, because the visual information only include relative locations of landmarks and moving objects
on the field.

[Action Interval] To control interval of sending commands: Because the server accepts a body command (turn, dash
and kick) per 100ms, the client needs to wait appropriate interval before sending a command.

[Parallelism] To execute sensor and action processes in parallel: Because the Soccer Server processes sensor informa-
tion and command asynchronously, clients need to execute a sensor process, which deals with sensor information, and
an action process, which controls to send commands, in parallel.

6.2. How to Create Clients 89

The RoboCup Soccer Simulator Users Manual

[Planning] To make a plan of play: Using sensor information, the client needs to generate appropriate command
sequences of play. Of course, this is the final goal of developing soccer clients!!

Here are two simple examples of stand-alone players, sclient1 and sclient2, which just chase the ball and kick it to the
opponent goal. The sources are available from

ftp://ci.etl.go.jp/pub/soccer/client/noda-client-2.0.tar.gz

In the examples, the functions listed above are realized as follows:

• For Sensing function, both examples use common facilities of class BasePlayer, class FieldState, and
estimatePos functions. By these facilities, the example programs do:

– receive data from a socket connected with the server,

– parse the data as S-expression,

– interpret the expression into internal data format (class SensorInfo),

– and in the case the received data is visual sensor information, estimate player’s and other object’s
positions.

For more detail, please read the source code.

• For Action Interval and Parallelism functions, the two examples use different methods. The first example, sclient1
uses timeout of select() function. The second one, sclient2 uses the multi-thread (pthread) facility. These are
described below.

• For Planning function, both examples have very simple planners as follows:

– If the player does not see the ball in recent 10 steps, or if the player can not estimate its position in
recent 10 steps, it looks around.

– If the ball is in kickable area, it kicks the ball to the opponent goal.

– Otherwise, the player rushes to the ball (turns to the ball and dashes).

sclient1

The sclient1 uses the timeout facility of select() function to realize Action Interval and Parallelism.

The key part of the program is in MyPlayer::run(). Here is the part of the source code

//--
// enter main loop

SocketReadSelector selector ;

TimeVal nexttic ; // indicate the timestamp for next command send
nexttic.update() ; // set nexttic to the current time.

while(True) {
//---
// setup selector

selector.clear() ;
selector.set(socket) ;

//---
// wait socket input or timeout (100ms) ;

Int r = selector.selectUntil(nexttic) ;
(continues on next page)

90 Chapter 6. Soccer Client

ftp://ci.etl.go.jp/pub/soccer/client/noda-client-2.0.tar.gz

The RoboCup Soccer Simulator Users Manual

(continued from previous page)

if(r == 0) { // in the of timeout. (no sensor input)
doAction() ; // enter action part
nexttic += TimeVal(0,100,0) ; // increase nexttimetic 100ms

} else { // got some input
doSensing() ; // enter sensor part

}
}

Here, class SocketReadSelector is a class to abstract facilities of select() and is defined in ”itk/Socket.h”. In the line
“Int r = selector.selectUntil(nexttic) ;”, the program awaits the socket input or timeout indicated by nexttic, which holds
the timestamp of the next tic (simulation step). The function returns 0 if timeout, or the number of receiving sockets. In
the case of timeout, the program calls doAction() in which a command is generated and sent to the server, or otherwise,
it calls doSensing() in which a sensor information is processed.

sclient2

The sclient2 uses the POSIX thread (pthread) facilities to realize Action Interval and Parallelism.

The key part of the program is also in MyPlayer::run(). Here is the part of the source code:

//--
// fork sensor thread

forkSensor() ;

//--
// main loop

while(True) {
if (!isBallSeenRecently(10)) {

//------------------------------
// if ball is not seen recently
// look around by (turn 60)
for(UInt i = 0 ; i < 6 ; i++) {
turn(60) ;
}

} else if (kickable()) {
...

}
}

The statement “forkSensor() ;” invokes a new thread for receiving and analyzing the sensor information. (The behavior
of the sensor thread are defined in ”SimpleClient.*” and ”ThreadedClient.*”.) Then the main thread enters the main
loop in which action sequences of “chasing the ball and kick to the goal” are generated. Because Sensing function is
handled in the sensor thread in parallel, the main thread needs not take care of the sensor input.

In order to keep action interval to be 100ms, the sclient2 waits for the next simulation step by the function Threaded-
Player::sendCommandPre() defined in ”ThreadedPlayer.cc” as follows:

Bool ThreadedPlayer::sendCommandPre(Bool bodyp) {
cvSend.lock() ;

if(bodyp) {
(continues on next page)

6.2. How to Create Clients 91

The RoboCup Soccer Simulator Users Manual

(continued from previous page)

while(nextSendBodyTime.isFuture())
cvSend.waitUntil(nextSendBodyTime) ;

}
while(nextSendTime.isFuture()) {

cvSend.waitUntil(nextSendTime) ;
}
return True ;

} ;

In this function, MutexCondVar cvSend provide a similar timeout facility of select() function used in sclient1 described
above. (MutexCondVar is a combination of condition variable (pthread_cond_t) and mutex (pthread_mutex_), and is
defined in ”itk/MutexCondVar.h”.) Because the function is called just before the player sends a command to the server,
and nextSendBodyTime is controlled to indicate the timestamp of the next simulation step, the thread waits to send a
command in the next tic.

6.2.3 Tips

Here we collect tips to develop soccer client programs.

• Debugging is the main problem in developing your own team. So try to find easy debuging methods.

• A nice and simple way to see your program’s variables in a condition is to use an abort() command or some
asserts to force the program to core-dump; And debug the core using gbd.

• Log every message received from the server and sent to the server. It is very useful for debugging.

• Using ready to use libraries for socket and parsing problems is useful if you are a beginner.

• Remember to pass the version number to the server in the init command. Although it is optional, the default is
3.00 which usually is not desired.

• Even if the catch probability is 1.00 your catch command may be unsuccessful because of errors in returned
sensors about the positions.

• The first serious problem you may encounter is the timing problem. There are many methods to synchronize
your client’s time with server. One simple methods is to use received sense body information.

• Beware of slow networks. If your timing is not very powerful your client’s will behave abnormaly in a crowded
or slow network or if they are out of process resources (e.g. you run many clients on one slow machine). In this
case they may see older positions and will try to act in these positions and this will result in confusion (e.g. they
will turn around themselves)

• The main usage of flags are for the player to find the position of himself in the field. Your very first clients may
ignore flags and play with relative system of positions. But you may need a positioning module in the near future.
There are many of the in the ready to use libraries.

• The program should check the end of buffer in analyzing sensor information. The sensor information uses S-
expressions. But the expression may not be completed when the sensor data is longer than the buffer, so that
some closing parentheses are lost. In this case, the program may core-dump if it parses the expression naively.

92 Chapter 6. Soccer Client

CHAPTER

SEVEN

COACH

7.1 Introduction

Coaches are privileged clients used to provide assistance to the players. There are two kinds of coaches, the online coach
and the trainer. The latter is often called ‘off-line coach’ as well, but for clarity sake we will use the term ‘trainer’.

7.2 Distinction Between Trainer and Online Coach

In general,the trainer can exercise more control over the game and may be used only in the development stage,where
as the online coach may connect to official games. The trainer is useful during development for such tasks as running
automated learning or managing games. The on-line coach is used during games to provide additional advice and
information to the players.

While developing player clients,for example when applying machine learning methods to learn skills like dribbling or
kicking, it might be useful to create training sessions in an automated way. Therefore, the trainer has the following
capabilities:

• It can control the play-mode

• It can broad cast audio messages. Such a message can consist of a command or some information intended for
one or more of the player-clients. Its syntax and interpretation are user-defined.

• It can move the players and the ball to any location on the field and set their directions and velocities.

• It can get noise-free information about the movable objects.

For details on these capabilities see Section 7.3.

The online coach is intended to observe the game and provide advice and information to the players. Therefore, it’s
capabilities are somewhat limited:

• It can communicate with the players.

• It can get noise-free information about the movable objects.

To prevent the coach from controlling each client in a centralized way, communication is restricted in several ways as
described in Section 7.7. The online coach is a good tool for opponent modelling, game analysis, and giving strategic
tips to its teammates. Since the coach gets a noise-free, global view over the field and has less real-time demands, it
is expected that it can spend more time deliberating over strategies. See Section 7.6 for more details about the online
coach.

93

The RoboCup Soccer Simulator Users Manual

7.3 Trainer

7.3.1 Connecting with and without the Soccerserver Referee

By default, an internal referee module is active within the soccerserver that controls the match (see Section 4.7). If
the trainer should have complete control over the match, the soccerserver must be instructed to deactivate the referee
module. This means for example, that the play-mode will not change and players will not be moved back to their sides
after a goal. The trainer has to react to these events by its own rules.

The soccerserver must be informed at startup-time that a trainer-client will be used. Add the option -coach to thecom-
mand arguments of the soccerserver application when a coach-client is used and the internal referee module of the
server must be deactivated. You can also add the line coach to the server.conf.

If you want to connect a trainer but let the server referee remain activated, add the option -coach_w_referee to the
command arguments of the server or add coach_w_referee to the server conguration file.

If the server is invoked with one of the trainer modes, it prepares a UDP socket to which the trainer-client can connect.
The default port number is 6001. If a different port number is needed the new port can be set by assigning its value to
the coach_port parameter (see Section B.1).

7.4 Commands

The trainer and the online coach can use the following set of commands. The items are listed in three categories. The
first category includes commands that can be used only by the trainer, the second includes commands that can be used
also by the online coach with certain restrictions, and the third lists commands that can be used by both trainer and
online coach.

7.4.1 Commands that can be used only by the trainer

• (change_mode PLAY_MODE)

Change the play-mode to PLAY_MODE. PLAY_MODE must match one of the modesde nedin Section 4.7.1. Note
that for most play-mode requests the soccerserver will only change the play-mode. The position of the ball usually
remains unchanged, but in some cases players will be moved. E.g. in free-kick and kick-in playmodes they will be
moved away from the ball if they stand within a certain radius. When changing to ‘before_kick_off’ they will be even
moved to their own side.

Possible replies by the soccerserver:

• (ok change_mode)
The command succeded.

• (error illegal_mode)
The specified mode was not valid.

• (error illegal_command_form)
The PLAY_MODE argument was omitted

• (move OBJECT X Y [VDIR [VELx VELy]])

This command will move OBJECT, which may be a player or the ball (see Section Sensor models for format informa-
tion),to absolute position(X,Y). If VDIR is specified, it will also change its absolute facing direction to VDIR (this only
matters for players). Additionally, if VELx and VELy are specified, the object’s velocity will be set accordingly.

The trainer always uses left-hand coordinates.

Possible replies by the soccerserver:

94 Chapter 7. Coach

The RoboCup Soccer Simulator Users Manual

• (ok move)
The command succeded.

• (error illegal_object_form)
The OBJECT specification was not valid.

• (error illegal_command_form)
The position, direction, and/or velocity specification was not valid.

• (check_ball)

Ask the soccerserver to check the position of the ball. Four positions are defined:

• in_field
The ball is whithin the boundaries of the field.

• (goal_l)
The ball is whithin the area assigned to the goal at the left side of the field.

• (goal_r)
The ball is whithin the area assigned to the goal at the right side of the field.

• (out_of_field)
The ball is somewhere else.

Note that the states ‘goal_l’ and ‘goal_r’ do not necessary imply that the ball actually crossed the goal line.

Possible replies by the soccerserver:

• (ok check_ball TIME BALLPOSITION)
BALLPOSITION will be one of the states specified above.

• (start)

This commands starts the server, e.g. sets the play-mode to ‘kick_off_l’. This essentially simulates pressing the kick
off button on the monitor.

If the trainer does not send an init command, then the first commands of any type received from the trainer will cause
the server to start, e.g. set the play-mode to ‘kick_off_l’.

Possible replies by the soccerserver:

• (ok start)
The command succeeded.

• (recover)

This command resets players’ stamina, recovery, effort and hear capacity to the values at the beginning of the game.

Possible replies by the soccerserver:

• (ok recover)
The command succeeded.

• (ear MODE)

It turns on or off the sending of auditory information to the trainer. MODE must be one of on and off. If (ear on) is
sent, the server sends all auditory information to the trainer. See Table 7.3 for the format. If (ear off) is sent, the server
stops sending auditory information to the trainer.

Possible replies by the soccerserver:

• (ok ear on) and (ok ear on)
Both replies indicate that the command succeeded.

7.4. Commands 95

The RoboCup Soccer Simulator Users Manual

• (error illegal_mode)
MODE did not match on or off.

• (error illegal_command_form)
The MODE argument was omitted.

7.4.2 Commands that can be used only by the online coach

• (init (version VERSION)) for the trainer and

• (init TEAMNAME (version VERSION)) for the online coach.

These commands tell the server which protocol version should be used to communicate with the trainer or coach. In
the case of the online coach TEAMNAME has to be specified to indicate which team the coach belongs to. Note that
the coach must connect after at least one player from its team.

The trainer is not required to issue an init command. However, it is recommended that the trainer does so. Otherwise,
the server will communicate with an older protocol.

It should be mentioned that the default port is 6001 for the trainer and 6002 for the online coach.

Possible replies by the soccerserver:

• (init ok)
The command succeeded in case of the trainer.

• (init SIDE ok)
The command succeeded in case of the online coach. SIDE is either ‘l’ or ‘r’.

• (say MESSAGE)

Note that the online coach can use this command with the same syntax, but there are more restrictions. See Section
7.6.2 for details.

This command broadcasts the message MESSAGE to all clients in the case of the trainer and only to teammates in the
case of the online coach. For the trainer the format of MESSAGE is the same as for a player-client. It must be a string
whose length is less than say_coach_msg_size*(see Section B.1) and it must consist of alphanumeric characters and/or
the symbols().+/?<>_

The format which the players hear these messages can be found in Section 4.3.1.

Possible replies by the soccerserver:

• (ok say)
The command succeeded.

• (error illegal_command_form)
MESSAGE did not match the required format.

• (change_player_type TEAM_NAME UNUM PLAYER_TYPE) for the trainer and

• (change_player_type UNUM PLAYER_TYPE) for the online coach.

These commands can be used to change the heterogeneous player type (see Section 4.6) of the player with the number
UNUM of team TEAM_NAME to the type PLAYER_TYPE. PLAYER_TYPE is a digit between 0 and 6, where 0
denotes the default player type. Note that in the case of the online coach the argument TEAM_NAME is missing,
because it can only change player types in its own team.

The trainer does not have to comply to the rule that a maximum of three (specified by subs_max) players of each type
can be on the field.

See Section 7.6.3 for details about the restrictions as to when and how the online coach may substitute players.

Possible replies by the soccerserver:

96 Chapter 7. Coach

The RoboCup Soccer Simulator Users Manual

• (warning no_team_found)
The team does not exist.

• (error illegal_command_form)
If change_player_type is not followed by a string, two integers and a close bracket.

• (warning no_such_player)
If there is no player with that uniform number on that team.

• (ok change_player_type TEAM UNUM TYPE)
The command succeeded.

Additionally, the soccerserver can send the following replies to the online coach:

• (warning cannot_sub_while_playon)
If the play-mode is ‘play-on’.

• (warning no_subs_left)
If the coach has already made its three (specified by subs_max) subs for the game.

• (warning max_of_that_type_on_field)
If the player-type is not the default and there are three (specified by subs_max) of that type already on the
field.

• (warning cannot_change_goalie)
If the coach tries to change the player type of the goalie.

The server responds to the teammates with:

• (change_player_type UNUM TYPE)

and opponents (including opponent coach) with:

• (change_player_type UNUM)

TODO: team_graphic

7.4.3 Commands that can be used by both trainer and online-coach

• (look)

This command provides information about the positions of the following objects on the field:

• The left and right goals.

• The ball.

• All active players.

Note that the trainer and online coach for both sides receive left hand coordinates. That is, the coaches receive informa-
tion in the global coordinates that the left hand team uses. In general,the players receive no global information (the one
exception being the move command), but it is common for teams to localize themselves so that the negative x direction
is towards the goal they defend.

Possible replies by the soccerserver:

• (ok look TIME (OBJ1 OBJDESC1) (OBJ2 OBJDESC2) . . .)
OBJj can be any of the objects mentioned above. See Section 4.3 for information about the way the names
for those objects are composed. OBJDESCj have the following form:

– For goals: X Y

– For the ball: X Y DELTAx DELTAy

– For players: X Y DELTAx DELTAy BODYANGLE NECKANGLE [POINTING_DIRECTION]

7.4. Commands 97

The RoboCup Soccer Simulator Users Manual

The coordinates are always in left-hand orientation, no matter whether a trainer or online coach is used.

If the trainer/coach should receive visual information periodically, use the (eye on) command.

• (eye MODE)

MODE must be one of on and off . If (eye on) is sent, the server starts sending (see_global . . .) information (see
Section 7.5) every 100ms (the interval is specified by the send_vi_step parameter automatically to the client. If (eye
off) is sent, the server stops to send visual information automatically. In this case the trainer/coach has to ask actively
with (look), if it needs visual information.

Possible replies by the soccerserver:

• (ok eye on) and (ok eye off)
Both replies indicate that the command succeeded.

• (error illegal_mode)
MODE id not match on or off.

• (error illegal_command_form)
The MODE argument was omitted.

• (team_names)

This command makes the trainer/coach receive information about the names of both teams and which side they are
playing on.

Possible replies by the soccerserver:

• (ok team_names [(team l TEAMNAME1) [(team r TEAMNAME2)]])
Depending on whether the teams already connected no, one, or both team name(s) will be supplied. Recall
that the first team that connects will be on the left side.

7.4.4 Commands that can be used only by the online-coach

• (team_graphic (X Y “XPM line” . . . “XPM line”))

The online coach can send teams-graphics as 256x64 XPM to the server. Each team_graphic-command sends a 8x8
tile. X and Y are the coordinates of this tile, so they range from 0 to 31 and 0 to 7 respectively. Each XPM line is
a line from the 8x8 XPM tile. Monitors that are connected to the server will receive the following message on the
message-board after each of the coach’s team_graphic-commands: (team_graphic_l|r (X Y “XPM line” . . . “XPM
line”))

Possible replies by the soccerserver:

• (ok team_graphic X Y)
For each tile the server sends this string in order to signal its arrival.

7.5 Messages from the Server

Apart from the replies to the commands mentioned above the server also sends some messages to the trainer and online
coach. If the clients connect to the server with a version >= 7.0 (using the init-command),they will receive the following
parameter messages just like player clients:

• (server_param . . .) once

• (player_param . . .) once

• (player_type . . .) once for each player type

98 Chapter 7. Coach

The RoboCup Soccer Simulator Users Manual

See Section 4.2.2 for details on the parameter messages.

If the client chooses to receive visual information in each cycle by sending (eye on) it will receive messages in the
following format every 100ms (send_vi_step):

class center

(see_global (OBJ1 OBJDESC1)(OBJ2 OBJDESC2) . . .)

OBJj denotes the name of the object. See Table 4.3 for information about the way the names for those objects are
composed. OBJDESCj have the following form:

• For goals: X Y

• For the ball: X Y DELTAx DELTAy

• For players: X Y DELTAx DELTAy BODYANGLE NECKANGLE [POINT-ING_DIRECTION]

The syntax is the same as in the reply to the (look) command, so coordinates are always in left-hand orientation.

If the client wants to receive auditory information and sent (ear on) to the server, it will receive all auditory information,
from both the referees and all of the players. There are two kinds of hear messages:

• (hear TIME referee MESSAGE) for all referee messages, such as “play_on” and “free_kick_left”. See Section
4.7 for a list of the valid messages from the referee.

• (hear TIME (p “TEAMNAME” NUM) “MESSAGE”) for all player messages. Note the quotes around the
message.

See Section 4.3.1 for more details about the players speaking and listening abilities.

7.6 Online Coach

7.6.1 Introduction

The online coach is a privileged client that can connect to the server in official games. It has the capability of receiving
global and noise-free information about the objects on the field. In order to encourage research in this area there are
special coach contests since 2001. This way, research groups that do not want to develop a team of player clients can
participate in the RoboCup challenge by focusing on the online coach. Additionally, in order to make it possible to
use a single coach with a variety of teams, a standard coach language (CLang) has been developed that can be used to
communicate with the players.

See Section 7.4 and 7.5 for details about the commands that can be used by the online coach and messages that will be
sent by the server.

7.6.2 Communication with the players

Prior to version 7.00, the online coach could say short (128 characters, say_coach_msg_size) alphanumeric (plus the
symbols().+*/?<>) messages when the play-mode is not ‘play_on’. This type of message still exists as a “freeform”
message, but there are now other standard message types. Since version 8.05 there are also certain intervalls in
which freeform-messages can be sent even during ‘play_on’. Every 600 cycles (specified by freeform_wait_period)
of ‘play_on’ the coach can send freeform-messages for 20 cycles (specified by freeform_send_period). For example, if
the playmode changes to ‘play_on’ at cycle 420 and stays in ‘play_on’ till the end of this example,the coach can send
freeform-messages between 1020 and 1040, 1620 and 1640, etc. The coach can send say_coach_cnt_max freeform
messages per game. The length of these messages has to be less than say_coach_msg_size. If the game continues into
extended time, the online coaches are given an additional say_coach_cnt_max messages to say every additional 6000
cycles (or whatever the normal length of a game is). Allowed messages are cumulative, so if the coach does not use all

7.6. Online Coach 99

The RoboCup Soccer Simulator Users Manual

its allowed messages, it can use them in the extended time. The server will send (error said_too_many_messages) if
the coach tries to send messages after it reached the maximum number.

It should be noted that freeform-messages are not allowed in coach-competition-games, and are only supported by
CLang for compatibility reasons.

In the standard coach language there are three other types of messages: rule-, define-, and delete-messages. To prevent
coaches from micro-controlling every single action of the players communication is restricted in the following ways.

Every 300 cycles (specified by clang_win_size) the coach can send one of each. Note that the number of allowed
messages can be changed by setting the clang_define_win, clang_del_win, and clang_rule_win parameters (see Sec-
tionB.1). The messages are heard by the players 50 (specified by clang_mess_delay) cycles later. If the play-mode is
not ‘play_on’, one (specified by clang_mess_per_cycle) message is sent to the players in each cycle, even if the delay
time has not elapsed. Messages that are sent while the play mode is not ‘play_on’ do not count towards the message
number restrictions. For example, if the default values are used the coach can send one message per cycle during breaks
that will be heard by the players without delay. The server guarantees that messages of each type will be sent to the
players in the same order in which they were received from the coach.

The language grammar developed below does not place restrictions on the length of the messages which can be sent
to the server. However, for very practical reasons, any message in the standard language cannot be longer than 8154
characters (this is so the maximum message which should be sent to the player is 8K).

The first version of the coach language (Clang) was developped for server version7.x. For server version 8.x the language
has been extended. Because of this, clients that want to receive messages from their coach have to explicitly advise the
server, which version of CLang they support. This is done by sending

• (clang (ver MIN MAX))

where MIN and MAX are unsigned integers denoting the earliest and latest supported version of CLang, respectively.
Clients that do not send such a message will not receive coach messages. The server is able to determine the version
number of coach messages and will filter out any messages that are not supported by the player. If a message has been
filtered out, the players will receive

• (hear TIME online_coach_left|right (unsupported_clang))

The coach will receive a message for each player which informs it about the supported versions:

• (clang (ver (PLAYER_NAME) MIN MAX))

This means that you have to add the sending of (clang (ver 7 7)), if you use version 7 source code of players with newer
server versions.

The standard coach language will be described in detail in Section7.7.

7.6.3 Changing Player Types

Using the change_player_type-command (described in Section7.4) the online coach can change player types unlimited
times in ‘beforekickoff’ play-mode. Of course these changes have to comply with the general rules about heterogeneous
players (see Section 4.6). After kick-off player types can be changed three (subs_max) times during play-modes that
are not ‘play_on’.

See the description of the change_player_type-command in Section 7.4 for details about the possible replies from the
server.

Note: A player client will be informed about substitutions that occurred before the client connected by the message
(change_player_type UNUM TYPE) for substitutions in it own team and (change_player_type UNUM) for substi-
tutions in the opponent team.

100 Chapter 7. Coach

The RoboCup Soccer Simulator Users Manual

7.6.4 Team Graphic

TODO

7.7 The Standard Coach Language

7.7.1 General Properties

The standard coach language was developed to enable coaches to work together with teams from different research
groups. One of the design goals was to have clear semantics that should prevent misinterpretation from both the
players and the coach. The language is based on low-level concepts that can be combined to construct new high level
concepts.

Additionally, coaches cancommunicate a certain number of freeform messages that may be arbitrary strings to the
players during non-‘play_on’-modes. See Section 7.6.2 for details. Be aware though, that freeform messages probably
will not be understood by other teams if you plan to use your coach with other teams.

The language description below is the improved and extended version of the language developed by the community,
as it is supported by server version8.x. While the first version of CLang is still supported by the server, its use is not
encouraged. A complete description of this first version can be found in them anual for server version 7. It is hoped
that all interested researchers will continue to develop CLang in order to make it a useful tool for multi-agent research.

Some concepts were derived from Unilang [14] (e.g. definitions and several actions) and SFL[12] (e. g. variables and
point arithmetic).

Note that the server itself parses all the coach messages using flex and bison (the GNU replacements for lex and yacc)
and constructs a simple representation based on a C++ class hierarchy. Please feel free to use and modify this code
from the server to handle the parsing of the coach messages. In particular, look at the coach_lang* files.

7.7.2 Example Language Utterance

The general idea of CLang is to describe tactics and behaviours as rules which map directives to conditions. Each rule
consists of a component which denotes a situation (the condition) and a list of directives which are applicable if the
situation-description is truein the given worldstate. Rules can either be used as advise which tells the player how to
actor as information which for example describes how the opponent behaves in certain situations. In CLang rules also
have an ID, so that the coach can refer to them later.

A simple rule which advises the player number 5 to pass to his teammate with the number 11 if it has the ball and is in
the middle of the field can be defined as follows:

(define
(definerule

MyRule1

direc (

(and

(bowner our 5)

(bpos (rec (pt -10 -10) (pt 10 10))))

(do our 5 (pass 11)))))

Each of the primitives will be explained in detail later. For now it should suffice to get the idea that the rule is assigned
the ID “MyRule1” and is defined as a directive (as compared to a model-rule which describes observed behavior).
bowner determines that player 5 of the coach’s team is the ballowner. bpos specifies the ballposition by means of a

7.7. The Standard Coach Language 101

The RoboCup Soccer Simulator Users Manual

rectangle. Finally, the directive advises player number 5 to pass to his teammate 11. In CLang lingo (pass 11) is an
action and (do our5 (pass 11)) is a directive.

Rules are off by default. So the coach has to turn them off by sending a message like (rule (on MyRule1))

Now the language concepts will be looked at in more detail.

7.7.3 Overview of the Five Message Types

There are four types of coach messages in the standard coach language: Rule, Define, Delete, and Freeform. Their
purpose and format will be described in this section,and some examples will be given.

In the following format description elements in capitals denote non-terminal symbols which are defined in section 7.7.7.

Define-message: Define messages are the most complex messages in CLang, because they define and combine the
components which the coach wants to share with the players, like conditions, directives, regions, actions, and rules. By
defining acomponent its is assigned an ID which the coach can use to refer to it in later messages.

Conditions: Formatfor defining a condition: (definec CLANG_STR CONDITION)

Example: (definec “Defense” (bowner opp 0)) This defines the condition in which any player
of the opponent team owns the ball.

Actions: Format for defining an action:(definea CLANG_STR ACTION)

Example: (definea “Pass7” (pass 7))

Directives: Format for defining a directive:(defined CLANG_STR DIRECTIVE)

Example: (defined “Pass10to11” (doour 10 (pass 11))) This directives denotes player 10 pass-
ing to player 11.

Regions: Format for defining a region:(defined CLANG_STR REGION)

Example: (defined “OURHALF” (rec (pt -52.5 -34) (pt 0 34))) A rectangle which covers the
team’s own half is defined.

Rules: Formatfor defining a rule:(definerule CLANG_VAR model RULE) or (definerule
CLANG_VAR direc RULE)

Example: (definerule Rule1 direc ((playm bko) (do our 7 (pos (pt -20 20))))) This rule states
that player 7 should position itself at the given point before kick-off. See also section7.7.4 about
defining rules.

Rule-message: Rule messages are used to turn previously defined rules on or off. After defining a rule, it is off by
default.

Format: (rule ACTIVATION_LIST)

Example: (rule (on rule2) (off rule1))

Delete-message: The delete message tells a player that a rule will not be used again and can be removed from the
memory. This also means that after deleting a rule, its ID should not appear in other nested rule-definitions (see section
7.7.4) anymore.

Format: (delete ID_LIST)

Examples: (delete Rule1) (delete (Rule1 Rule2)) (delete all) Deletes one rule, a list of two rules, or all
rules, respectively.

Freeform-message: Free form messages are arbitrary strings and can be sent according to the afore-mentioned restric-
tions in section7.6.2.

Format: (freeform “STRING”) Note that STRING must be included in quotes.

102 Chapter 7. Coach

The RoboCup Soccer Simulator Users Manual

7.7.4 Defining Rules

The definition of rules is an important part in CLang, so it will be looked at in more detail in this section. Remember
that a rule consists of a condition and a list of directives, which again contain actions.

As stated above the format for defining a rule is (definerule DEFINE_RULE) using the following components:

<DEFINE_RULE>: <CLANG_VAR> model <RULE>
| <CLANG_VAR> direc <RULE>

<RULE>: (<CONDITION> <DIRECTIVE_LIST>)
| (<CONDITION> <RULE_LIST>)
| <ID_LIST>

Each rule is assigned a name complying the definition of CLANG_VAR. Additionally, rules are in one of two modes,
either model which states that the rule is a description of observed behavior, or direc which states that the rule is a
directive to behave in a certain way.

Now,the actual content of a rule can be specified in several ways:

• (CONDITION DIRECTIVE_LIST)

This is the straight-forward way. The example in section 7.7.3 complies to this format. The CONDITION denotes a
situation, and DIRECTIVE_LIST denotes the appropriate directives. Note that the list can contain directives for one,
several, or all players, or even several directives for the same player. In the latter case it is up to the player to decide
which directive is to be followed.

• (CONDITION RULE_LIST)

This is a very powerful format for combining rules to larger tactics. Since each rule in RULE_LIST already contains a
condition, a definition of this form results in nested rules. It can for example be used to activate several rules simulta-
neously. Suppose, there are already several rules specifying the home positions of the defenders: pos2a and pos2b for
player 2, and pos3a and pos3b for player 3. Now, by using

(definerule defenseformation direc ((bowner our {0}) (pos2a pos3a)))

and

(definerule offenseformation direc ((bowner opp {0}) (pos2b pos3b)))

it can be specified when the rules are supposed to be active (depending on which team owns the ball). For evaluating
such definitions, the outer condition is assumed to be distributed into the inner conditions, being combined with logical
and. E.g. assume that pos2a was specified as

((time > 20) (do our {2} (pos (pt -40 10))))

then the above definition would create

((and (bowner our {0}) (time > 20)) (do our {2} (pos (pt -40 10))))

• ID_LISTS

Similar to the above format, this way several existing rules can be combined. Suppose, there have been defined two
rules:

(definerule position2 direc ((true) (home (pt -40 -10))))

(definerule mark2 direc ((bowner opp {10}) (mark 10)))

These can be combined into a behavior for player 2:

(definerule player2 direc (position2 mark2))

7.7. The Standard Coach Language 103

The RoboCup Soccer Simulator Users Manual

7.7.5 Semantics and Syntax Details of the Components

In the following the syntax and semantics of the non-terminal symbols which were used in the format outlines above
will be described. Rules have a condition on the left-hand side, and a set of actions on the right hand side. Thus each
rule can be thought of as essentially specifying an if-then statement:

if CONDITION
then { DIRECTIVE_1 DIRECTIVE_2 ... }

In the player’s programs, it is easy to represent all the advice given by the coach as a small rule-base. Following the
advice would be easy by matching the current world state against the condition, and trying to act on the directives.
Note: If more than one condition applies to the current situation and the corresponding directives differ, it is up to the
player to choose the directive. Note that the player should also exercise some discretion in following directives. For
example, if the only directive which matches is to pass to player 5, but player 5 is well-covered by opponents, the player
with the ball may choose to ignore the directive for now.

• Conditions:

A condition is made from the logical connectives over atomic state description propositions:

– (ture)
Always true.

– (false)
Always false.

– (ppos TEAM UNUM SET INT INT REGION)
The first INT is the MINIMUM and the second is the MAXIMUM At least MINUMUM but
no more than MAXIMUM players in UNUM SET from team TEAM are in region REGION.
Regions and unum sets are more precisely defined below. TEAM is either ”our” or ”opp”.
There is no ambiguity since the coach can only be heard by its own players.

– (bpos REGION)
The ball is in region REGION.

– (bowner TEAM UNUM SET)
The ball is controlled by some player in UNUM SET of team TEAM. The ball-owner is the
last player that had ball contact (i.e. the ball was in his kickable area), even if the ball left his
control after that.

– (playm PLAY MODE)
The play-mode is PLAY MODE. See Section 7.7.7 for the valid values of PLAY MODE.

– (COND COMP)
The time, goal-difference, number of own or opponent goals can be compared with constants,
using the operators < > <= == != >=. Examples: (time > 20) (2 >= opp goals)

– unum CLANG VAR UNUM SET
If CLANG VAR is instantiated, it is checked whether the unum denoted by the variable
CLANG VAR is in the set UNUM SET. If the variable is still unbound, it is bound to the
specific set.

The logical connectives are:

– (and CONDITION_1 CONDITION_2 . . . CONDITION_n)

– (or CONDITION_1 CONDITION_2 . . . CONDITION_n)

– (not CONDITION)

An example condition: ”When opponent player 3 is in region X and controls the ball” would be (and
(ppos opp {3} X) (bowner opp {3}))

104 Chapter 7. Coach

The RoboCup Soccer Simulator Users Manual

• Directives:

Directives are basically lists of actions for individual sets of players and come in two forms:

– (do TEAM UNUM SET ACTION LIST) (affirmative mode: players should take thess actions)

– (dont TEAM UNUM SET ACTION LIST) (negative mode: players should avoid taking these
actions)

If the actions in the affirmative mode are mutually exclusive, it is up to the player to decide which
one is to be followed. In rules which are in the model-mode, directives convey knowledge about the
plans/behaviors of the players or their opponents.

• Actions:

– (pos REGION)
The player should position itself in REGION.

– (home REGION)
The player’s default position should be in REGION. This directive is intended largely to specify for-
mations for the team.

– (mark UNUM SET)
The player should mark some opponent player in UNUM SET.

– (markl REGION)
The passing lane from the current ball position to REGION should be marked.

– (markl UNUM SET)
The passing lane from the current ball position to some opponent player in UNUM SET should be
marked.

– (oline REGION)
The offside-trap line for the player/team should be set at REGION.

– (htype TYPE)
The player is of heterogeneous type TYPE. The TYPE number is as described in Section 4.6. A value
of -1 should clear the player’s idea of the heterogeneous type.

– (pass REGION)
The ball should be passed to some player in REGION.

– (pass UNUM SET)
The ball should be passed to some player in UNUM SET.

– (dribble REGION)
The ball should be dribbled to REGION.

– (clear REGION)
The ball should be cleared from REGION, which means to shoot the ball to a point outside of REGION.

– (shoot)
The ball should be shot at the goal.

– (hold)
The player should hold the ball, i. e. stand at his position and keeping the ball away from opponents.

– (intercept)
The player should go to the ball and try to control it.

– (tackle UNUM SET)
The player should tackle some player in UNUM SET (or the ballowner?).

• Regions:

7.7. The Standard Coach Language 105

The RoboCup Soccer Simulator Users Manual

Any REGION token can be any of the following:

– a POINT
This is defined more precisely below

– (rec POINT 1 POINT 2)
Defines a rectangle with its sides parallel to the pitch-lines, respectively.

– (tri POINT 1 POINT 2 POINT 3)
Defines a triangle made up of the given points.

– (arc POINT RADIUS SMALL RADIUS LARGE ANGLE BEGIN ANGLE SPAN)
Defines a donut-arc: the area between two circles co-centered at point POINT, having the
given radii, with the arc defined starting at the beginning angle and covering the spannign
angle. For example a, a circle with radius r could be defined as “(arc (pt 0 0) 0 r 0 360)”,
and a U-shaped region could be defined as “(arc (pt 0 0) 5 10 0 180)”

– (null)
The null (empty) region.

– (reg REG_1 REG_2 . . . REG_n)
Defines a region made up from the union of the given regions.

A POINT is any of the following:

– (pt X Y)
X and Y are reals and in global coordinates. This is the absolute position (X,Y);

– (pt ball) The current global position of the ball.

– (pt TEAM UNUM) The current position of player number UNUM on team
TEAM (either ’our’ or ’opp’). Remember that UNUM can be a variable.

– (POINT 1 OP POINT 2)
This arithmetically combines two points to a new point. POINT i can be made up of
arithmetic operators, resulting in a recursive structure. The operators are defined in the
natural way, for example: (pt 𝑋1𝑌1) OP (pt 𝑋2𝑌2) = (pt 𝑋1 OP 𝑋2 𝑌1‘ * *𝑂𝑃 * * :
𝑚𝑎𝑡ℎ : ‘𝑌2) where OP is one of + * /

The use of these relative points makes it easy to express ideas such as “Move to the ball”, “If there are
2 teammates within 10m of the ball”, etc. Remember that the online coach receives visual information
alway in left-hand orientation, no matter which side its team plays on. Yet, when sending messages
to a team that plays on the right side, the coach must use right-hand orientation in the messages.
Transforming coordinates from left- to right-hand orientation is done by negating them.

• UNUM SETS:

Unum sets are sets of player numbers. These are sets in the sense that order does not matter and may
be changed by the server. If 0 is included anywhere in the set, then the set contains all players 1 - 11.
The set can contain variables.

Format: { :math: NUM_1 NUM_2 . . . NUM_n }

• Variables:

Technically, everywhere where UNUM occurs, a variable can be used. Yet, it is important to make
sure that the variables are instantiated or ground. The scope is the innermost spanning rule, e.g. in

1 (definerule rule1 model
2 (bowner our {0})
3 ((true) (do our {5} (mark 11)))

(continues on next page)

106 Chapter 7. Coach

The RoboCup Soccer Simulator Users Manual

(continued from previous page)

4 ((bowner our {X}) (do our {X} (shoot)))
5)

the scope of X is the complete line 4. This also shows how variables can be instan- tiated: Only in
conditions which have UNUMs as fixed argument (i. e. UNUMs in POINTs do not count as condition
UNUMS) a variable may be introduced. Its value is set by checking which unums make the condition
true. In the example X is instantiated with the uniform number of the ballowner. In a condition like
ppos it can be necessary to instantiate the variable as a set of unums:

(ppos our {X} 1 11 REGION) In this example X has to be instantiated as the set of unums
which are in REGION. Note that an instantiation as in (ppos our {5} 1 1 (rec (pt ball) (pt
our {X}))) is not supported.

7.7.6 Futher Resources

• The CLang Corpus contains examples of actual CLang messages:
http://www-2.cs.cmu.edu/ pfr/soccer/clang corpus.html

• The Multi-Agent Modeling Special Interest Group (MAMSIG) provides binaries
and sources of coachable teams and online coaches:

http://www.cl-ki.uni-osnabrueck.de/ tsteffen/mamsig

• The Coach-mailing-list discusses Clang details, competition rules, and coaching
methods: http://robocup.biglist.com/coach-l/

7.7.7 Syntax

The complete grammar of the standard coach language:

<MESSAGE> : <FREEFORM_MESS> | <DEFINE_MESS> | <RULE_MESS> | <DEL_MESS>

<RULE_MESS> : (rule <ACTIVATION_LIST>)

<DEL_MESS> : (delete <ID_LIST>)

<DEFINE_MESS> : (define <DEFINE_TOKEN_LIST>)

<FREEFORM_MESS> : (freeform <CLANG_STR>)

<DEFINE_TOKEN_LIST> : <DEFINE_TOKEN_LIST> <DEFINE_TOKEN>
| <DEFINE_TOKEN>

<DEFINE_TOKEN> : (definec <CLANG_STR> <CONDITION>)
| (defined <CLANG_STR> <DIRECTIVE>)
| (definer <CLANG_STR> <REGION>)
| (definea <CLANG_STR> <ACTION>)
| (definerule <DEFINE_RULE>)

7.7. The Standard Coach Language 107

http://www-2.cs.cmu.edu/
http://www.cl-ki.uni-osnabrueck.de/
http://robocup.biglist.com/coach-l/

The RoboCup Soccer Simulator Users Manual

<DEFINE_RULE> : <CLANG_VAR> model <RULE>
| <CLANG_VAR> direc <RULE>

<RULE> : (<CONDITION> <DIRECTIVE_LIST>)
| (<CONDITION> <RULE_LIST>)
| <ID_LIST>

<ACTIVATION_LIST> : <ACTIVATION_LIST> <ACTIVATION_ELEMENT>
| <ACTIVATION_ELEMENT>

<ACTIVATION_ELEMENT> : (on|off <ID_LIST>)

<ACTION> : (pos <REGION>)
| (home <REGION>)
| (mark <UNUM_SET>)
| (markl <UNUM_SET>)
| (markl <REGION>)
| (oline <REGION>)
| (htype <INTEGER>)
| <CLANG_STR>
| (pass <REGION>)
| (pass <UNUM_SET>)
| (dribble <REGION>)
| (clear <REGION>)
| (shoot)
| (hold)
| (intercept)
| (tackle <UNUM_SET>)

<CONDITION> : (true)
| (false)
| (ppos <TEAM> <UNUM_SET> <INTEGER> <INTEGER> <REGION>)
| (bpos <REGION>)
| (bowner <TEAM> <UNUM_SET>)
| (playm <PLAY_MODE>)
| (and <CONDITION_LIST>)
| (or <CONDITION_LIST>)
| (not <CONDITION>)
| <CLANG_STR>
| (<COND_COMP>)
| (unum <CLANG_VAR> <UNUM_SET>)
| (unum <CLANG_STR> <UNUM_SET>)

<COND_COMP> : <TIME_COMP>
| <OPP_GOAL_COMP>
| <OUR_GOAL_COMP>
| <GOAL_DIFF_COMP>

108 Chapter 7. Coach

The RoboCup Soccer Simulator Users Manual

<TIME_COMP> : time <COMP> <INTEGER>
| <INTEGER> <COMP> time

<OPP_GOAL_COMP> : opp_goals <COMP> <INTEGER>
| <INTEGER> <COMP> opp_goals

<OUR_GOAL_COMP> : our_goals <COMP> <INTEGER>
| <INTEGER> <COMP> our_goals

<GOAL_DIFF_COMP> : goal_diff <COMP> <INTEGER>
| <INTEGER> <COMP> goal_diff

<COMP> : < | <= | == | != | >= | >

<PLAY_MODE> : bko | time_over | play_on | ko_our | ko_opp
| ki_our | ki_opp | fk_our | fk_opp
| ck_our | ck_opp | gk_opp | gk_our
| gc_our | gc_opp | ag_opp | ag_our

<DIRECTIVE> : (do|dont <TEAM> <UNUM_SET> <ACTION_LIST>)
| <CLANG_STR>

<REGION> : (null)
| (arc <POINT> <REAL> <REAL> <REAL> <REAL>)
| (reg <REGION_LIST>)
| <CLANG_STR>
| <POINT>
| (tri <POINT> <POINT> <POINT>)
| (rec <POINT> <POINT>)

<POINT> : (pt <REAL> <REAL>)
| (pt ball)
| (pt <TEAM> <INTEGER>)
| (pt <TEAM> <CLANG_VAR>)
| (pt <TEAM> <CLANG_STR>)
| (<POINT_ARITH>)

<POINT_ARITH> : <POINT_ARITH> <OP> <POINT_ARITH>
| <POINT>

<OP> : + | - | * | /

<REGION> : <REGION_LIST> <REGION>
| <REGION>

<UNUM_SET> : { <UNUM_LIST> }

7.7. The Standard Coach Language 109

The RoboCup Soccer Simulator Users Manual

<UNUM_LIST> : <UNUM>
| <UNUM_LIST> <UNUM>

<UNUM> : <INTEGER> | <CLANG_VAR> | <CLANG_STR>

<ACTION_LIST> : <ACTION_LIST> <ACTION>
| <ACTION>

<DIRECTIVE_LIST> : <DIRECTIVE_LIST> <DIRECTIVE>
| <DIRECTIVE>

<CONDITION_LIST> : <CONDITION_LIST> <CONDITION>
| <CONDITION>

<RULE_LIST> : <RULE_LIST> <RULE>
| <RULE>

<ID-LIST> : <CLANG_VAR>
| (<ID_LIST2>)
| all

<ID-LIST2> : <ID_LIST2> <CLANG_VAR>
| <CLANG_VAR>

<CLANG_STR> : “[0-9A-Za-z().+-*/?<>_]+”

<CLANG_VAR> : [abe-oqrt-zA-Z_]+[a-zA-Z0-9_]*

Parameter
name

Used
value

Default
value

Explanation

coach_port 6001 6001 The port number the trainer connects to.
say_msg_size 512 256 Maximum length of a freeform message a player, trainer, or coach

can say.
say_coach_cnt_max128 128 Upper limit of freeform messages an online coach can say
send_vi_step 100 100 Interval of online coach’s look.
clang_win_size 100 100 Number of cycles that lie between online coach messages
clang_define_win 1 1 Number of define messages that can be sent in the aforementioned

interval.
clang_rule_win 1 1 Number of rule messages that can be sent in the aforementioned

interval.
clang_del_win 1 1 Number of delete messages that can be sent in the aforementioned

interval.
clang_mess_delay 50 50 Number of cycles messages from the online coach will be delayed.
clang mess per
cycle

1 1 Number of messages that will be sent to the players during non-
play on modes.

110 Chapter 7. Coach

The RoboCup Soccer Simulator Users Manual

Table 7.1: Trainer Interactions with the Server
From trainer to server From server to trainer

(init (version VERSION))
VERSION ::= a real number

trainer: (init ok)

(change mode PLAY_MODE)
PLAY MODE ::= one of the play-modes

(ok change_mode) (error illegal_mode) (error ille-
gal_command_form)

(move OBJECT X Y
[VDIR [DELTA_X DELTA_Y]])

OBJECT ::= One of object names
X ::= -52–52
Y ::= -32–32
VDIR ::= -180–180
DELTA_X, DELTA_Y ::= [float]

(ok move)
(error illegal_object_form)
(error illegal_command_form)

(check_ball)

(ok check_ball TIME BPOS)
TIME ::= sim. time of server
BPOS ::= in_field |

goal SIDE |
out of field

SIDE ::= l | r

(start)
(recover)

(ok start)
(ok recover)

(change_player_type
TEAM_NAME UNUM
PLAYER_TYPE)

TEAM_NAME ::= string
UNUM ::= 1–11
PLAYER_TYPE ::= 0–6

(warning no_team_found)
(error illegal_command_form)
(warning no_such_player)
(ok change_player_type

TEAM UNUM TYPE)

(ear MODE)
MODE ::= on | off

(ok ear on)
(ok ear off)
(error illegal mode)
(error illegal_command_form)

7.7. The Standard Coach Language 111

The RoboCup Soccer Simulator Users Manual

Table 7.2: Online Coach Interactions with the Server
From trainer to server From server to online coach

(init TEAMNAME
(version VERSION))

VERSION ::= a real number
TEAMNAME ::= string

(init SIDE ok)
SIDE ::= l | r

(change_player_type
UNUM PLAYER_TYPE)

UNUM ::= 1–11
PLAYER TYPE ::= 0–6

(warning no_team_found)
(error illegal_command_form)
(warning no_such_player)
(ok change_player_type

TEAM UNUM TYPE)
(warning cannot_sub_while_playon)
(warning no_subs_left)
(warning max_of_that_type_on_field)
(warning cannot_change_goalie)

112 Chapter 7. Coach

The RoboCup Soccer Simulator Users Manual

Table 7.3: Server Interactions with Trainer/Coach
From client to server From server to client

(say MESSAGE)
(see Section 7.4.2)

(ok say)
(error illegal command form)

(look)

(ok look TIME
(𝑂𝐵𝐽1 𝑂𝐵𝐽𝐷𝐸𝑆𝐶1)
(𝑂𝐵𝐽2 𝑂𝐵𝐽𝐷𝐸𝑆𝐶2)..)

𝑂𝐵𝐽𝑗 ::= object name
(see Section Sensor Models)

𝑂𝐵𝐽𝐷𝐸𝑆𝐶𝑗 ::= X Y |
X Y 𝐷𝐸𝐿𝑇𝐴𝑥 𝐷𝐸𝐿𝑇𝐴𝑦 |
X Y 𝐷𝐸𝐿𝑇𝐴𝑥 𝐷𝐸𝐿𝑇𝐴𝑦

BODYANG NECKANG

(eye MODE)
MODE ::= on | off

(ok eye on)
(ok eye off)
(error illegal mode)
(error illegal command form)

This message is sent automatically ev- ery send_vi_step
milliseconds when the coach/trainer eye is on (see the
“eye” commands below). (see_global TIME

(𝑂𝐵𝐽1 𝑂𝐵𝐽𝐷𝐸𝑆𝐶1)
(𝑂𝐵𝐽2 𝑂𝐵𝐽𝐷𝐸𝑆𝐶2). . .)

The trainer must use the ‘ear’ command to get these mes-
sages. The online coach always gets these messages.

(hear TIME referee MESSAGE)
(hear TIME

(p ”TEAMNAME” NUM)
”MESSAGE”)

TIME ::= time message was sent
TEAMNAME ::= string
NUM ::= 1–11
MESSAGE ::= string

(team_names)

(ok team_names
[(team l TEAMNAME1)
[(team r TEAMNAME2)]])

7.7. The Standard Coach Language 113

The RoboCup Soccer Simulator Users Manual

114 Chapter 7. Coach

CHAPTER

EIGHT

REFERENCES AND FURTER READING

8.1 General Papers

8.2 Doctrial Theses

8.3 Undergraduate and Master’s Theses

8.4 Platforms to start building team upon

8.5 Education-related articles

8.6 Machine Learning

8.7 Decision Making

8.8 Other supporting documents

8.9 Team Descriptions

115

The RoboCup Soccer Simulator Users Manual

116 Chapter 8. References and Furter Reading

BIBLIOGRAPHY

[AK99] Minoru Asada and Hiroaki Kitano, editors. RoboCup-98: Robot Soccer World Cup II. LNAI 1604.
Springer, Berlin, Heidelberg, New York, 1999.

[Burkhard97] Hans-Dieter Burkhard, Markus Hannebauer, and Jan Wendler. AT Humboldt — Development, Practice
and Theory. In Hiroaki Kitano, editor, RoboCup-97: Robot Soccer World Cup I, volume 1395 of Lecture
Notes in Computer Science, pages 357–372. RoboCup Federation, Springer–Verlag, 1997.

[RoboCup99proc] Silvia Coradeschi, Tucker Balch, Gerhard Kraetzschmar, and Peter Stone, editors. Team Descrip-
tions Simulation League RoboCup’99, Stockholm, Sweden, July 1999.

[JFK61] John F. Kennedy. Urgent National Needs. Congressional Record – House (25 may 1961), 1961.

[PreRoboCup96] Hiroaki Kitano, editor. Proceedings of the IROS-96 Workshop on RoboCup, Osaka, Japan, Novem-
ber 1996.

[RoboCup97] Hiroaki Kitano, editor. RoboCup-97: Robot Soccer World Cup I. Springer Verlag, Berlin, 1998.

[Kitano95IJCAI] Hiroaki Kitano, Minoru Asada, Yasou Kuniyoshi, Itsuki Noda, and Eiichi Osawa. RoboCup: The
Robot World Cup Initiative. In Proc. of IJCAI-95 Workshop on Entertainment and AI/Alife, pages 19–24,
1995.

[Kitano97] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa. RoboCup: The robot
world cup initiative. In W. Lewis Johnson and Barbara Hayes-Roth, editors, Proceedings of the First
International Conference on Autonomous Agents (Agents ’97), pages 340–347, New York, 5–8 1997.
ACM Press.

[Lanser97] Stefan Lanser, Christoph Zierl, Olaf Munkelt, and Bernd Radig. MORAL - A Vision-based Object Recog-
nition System for Autonomous Mobile Systems. In 7th International Conference on Computer Analysis
of Images and Patterns, Kiel, pages 33–41. Springer–Verlag, September 1997.

[Luke97] Sean Luke, Charles Hohn, Jonathan Farris, Gary Jackson, and James Hendler. Co-evolving Soccer Softbot
Team Coordination with Genetic Programming. In Hiroaki Kitano, editor, Proceedings of the RoboCup97
Workshop at the 15 th International Joint Conference on Artificial Intelligence (IJCAI97), pages 115–118,
1997.

[Mackworth93] Alan Mackworth. On Seeing Robots, chapter 1, pages 1–13. World Scientific Press, 1993.

[Nie01] Andreas G. Nie, Angelika Honemann, Andres Pegam, Collin Rogowski, Leonhard Hennig, Marco
Diedrich, Philipp Hugelmeyer, Sean Buttinger, and Timo Steffens. the osnabrueck robocup agents project.
Technical report, Institute of Cognitive Science, Osnabrueck, 2001.

[Noda97RoboCup97] Itsuki Noda, Shoji Suzuki, Hitoshi Matsubara, Minoru Asada, and Hiroaki Kitano. Overview
of RoboCup-97. In Hiroaki Kitano, editor, RoboCup-97: Robot Soccer World Cup I, pages 20–41.
Springer–Verlag, 1997.

117

The RoboCup Soccer Simulator Users Manual

[Reis01] Luis Paulo Reis and Nuno Lau. Coach unilang - a standard language for coaching a (robo)soccer team.
In Andreas Birk, Silvia Coradeshi, and Satoshi Tadokoro, editors, RoboCup-2001: Robot Soccer World
Cup V. Springer, Berlin, 2002..

[RoboCup2000] Peter Stone, Tucker Balch, and Gerhard Kraetszchmar, editors. RoboCup-2000: Robot Soccer World
Cup IV, Berlin, 2001. Springer Verlag.

[Dorer99] Klaus Dorer. Motivation, Handlungskontrolle und Zielmanagement in autonomen Agenten. PhD thesis,
Albert-Ludwigs-Universität Freiburg, Freiburg, December 1999. (German only).

[Stone98] Peter Stone. Layered Learning in Multi-Agent Systems. PhD thesis, School of Computer Science,
Carnegie Mellon University, December 1998.

[Kummeneje01PhL] Johan Kummeneje. RoboCup as a Means to Research, Education, and Dissemination. Ph. Lic.
Thesis, March 2001. Department of Computer and Systems Sciences, Stockholm University and the Royal
Institute of Technology.

[Heintz00] Fredrik Heintz. RoboSoc a System for Developing RoboCup Agents for Educational Use. Master’s thesis,
IDA 00/26, Linköping university, Sweden, March 2000.

[Murray99] Jan Murray. My goal is my castle – Die höheren Fähigkeiten eines RoboCup-Agenten am Beispiel des
Torwarts. Studienarbeit, Universität Koblenz-Landau,Germany, March 1999. (German only).

[Murray01] Jan Murray. Soccer Agents Think in UML. Diploma thesis, Universität KoblenzLandau, 2001.

[Obst99] Oliver Obst. RoboLog: Eine deduktive Schnittstelle zum RoboCup Soccer Server. Diploma thesis, Uni-
versität Koblenz-Landau, February 1999. (German only)

[Buck00] Sebastian Buck and Martin A. Riedmiller. Learning situation dependent successrates of actions in a
robocup scenario. In Pacific Rim International Conference on Artificial Intelligence, page 809, 2000.

[Stone00] Peter Stone. Layered Learning in Multiagent Systems: A Winning Approach toRobotic Soccer. MIT
Press, 2000.

[Subrahmanian00] Piero Bonatti, Jürgen Dix, Thomas Eiter, Sarit Kraus, Fatma Ozcan, and Robert Ross. Heteroge-
neous Agent Systems. MIT Press, Cambridge, Massachusetts, 2000.

[FIFA01] Laws of the games. by FIFA on http://www.fifa.com, 2000. Verified on 12th February 2001.

[Stevens90] W.R. Stevens. UNIX Network Programming. Prentice Hall, 1990.

[CMUnited98] Peter Stone, Manuela Veloso, and Patrick Riley. The CMUnited-98 Champion Simulator Team. In Mi-
noru Asada and Hiroaki Kitano, editors, RoboCup-98: Robot Soccer World Cup II. RoboCup Federation,
Springer–Verlag, 1998.

[CMUnited99] Peter Stone, Manuela Veloso, and Patrick Riley. The CMUnited-99 Simulator Team. In Silvia Corade-
schi, Tucker Balch, Gerhard Kraetzschmar, and Peter Stone, editors, Team Descriptions Simulation
League RoboCup’99, pages 7–11. RoboCup Federation, Linköping University Electronic Press, 1999.

118 Bibliography

http://www.fifa.com

INDEX

C
center (built-in class), 99

119

	Introduction
	Background
	The Goals of RoboCup
	Simulated League
	What is the Soccerserver

	History
	History of the Soccer Server
	History of the RoboCup Simulation League
	preRoboCup96
	RoboCup97
	RoboCup98
	RoboCup99
	RoboCup2000
	RoboCup 2004
	RoboCup 2005

	History of the Soccer Manual Effort

	About This Manual
	Reader’s Guide to the Manual

	Overview
	Getting Started
	The Server
	The Monitor
	The Logplayer
	The Demo Client

	The Rules of the Game
	Rules Judged by the Automated Referee
	Kick-Off
	Goal
	Out of Field
	Player Clearance
	Play-Mode Control
	Offside
	Backpasses
	Free Kick Faults
	Half-Time and Time-Up

	Rules Judged by the Human Referee

	Getting Started
	The Homepage
	Getting and installing the server
	Quick Start
	Full installation
	Configuring
	Building
	Installing
	Uninstalling

	Using the Simulator
	How to stop the server
	Supported platforms
	Troubleshooting

	Soccer Server
	Objects
	Protocols
	Player Command Protocol
	Connecting, reconnecting, and disconnecting
	Initial Settings
	Player Control
	Others

	Player Sensor Protocol

	Sensor Models
	Aural Sensor Model
	Capacity of the Aural Sensor
	Focus
	Range of Communication
	Aural Sensor Example

	Vision Sensor Model
	Asynchronous mode and Synchronous mode
	Range of View
	Range of View and View Frequency in Synchronous mode
	Focus Point
	Visual Sensor Noise Model: Protocol v17 or older
	Visual Sensor Noise Model: Protocol v18

	Body Sensor Model
	Fullstate Sensor Model

	Movement Models
	Movement Noise Model

	Collision Model
	Collision with other movable objects
	Collision with goal posts

	Action Models
	Catch Model
	Dash Model
	Sideward and Omni-Directional Dashes
	Stamina Model

	Kick Model
	Move Model
	Say Model
	Tackle Model
	Foul Model
	Turn Model
	TurnNeck Model
	Change Focus Model
	Pointto Model
	Attentionto Model

	Heterogeneous Players
	Referee Model
	Play Modes and referee messages
	Time Referee
	Offside Referee
	FreeKick Referee
	Touch Referee
	Catch Referee
	Foul Referee
	Ball Stuck Referee
	Illegal Defense Referee
	Keepaway Referee
	Penalty Shootouts Referee
	Rules

	The Soccer Simulation
	Description of the simulation algorithm
	Keepaway Mode

	Using Soccerserver
	Configuration Files
	Recording Command Log
	Automatic Mode
	Anonyous Mode
	Synchronous Mode
	Result Saver
	The Soccerserver Parameters

	Soccer Monitor
	Introduction
	Getting started
	Total number of monitor clients

	Communication from Server to Monitor
	Version 1
	Showinfo
	Messageinfo
	Drawinfo

	Version 2
	Version 3
	Version 4

	Communication from Monitor to Server
	How to record and playback a game
	Version 1 Protocol
	Version 2 Protocol
	Version 3 Protocol
	Version 4 Protocol
	Version 5 Protocol
	Settings and Parameters

	Team Graphic
	What’s New

	Soccer Client
	Protocols
	Initialization and Reconnection
	Initialization
	Reconnection
	Disconnection
	Version Control

	Control Commands
	Body Commands
	Communication Commands
	Misc. Commands

	Sensor Information
	Visual Sensor
	Audio Sensor
	Body Sensor

	How to Create Clients
	Sample Client
	Overall Structure of Sample Client

	Simple Clients
	Tips

	Coach
	Introduction
	Distinction Between Trainer and Online Coach
	Trainer
	Connecting with and without the Soccerserver Referee

	Commands
	Commands that can be used only by the trainer
	Commands that can be used only by the online coach
	Commands that can be used by both trainer and online-coach
	Commands that can be used only by the online-coach

	Messages from the Server
	Online Coach
	Introduction
	Communication with the players
	Changing Player Types
	Team Graphic

	The Standard Coach Language
	General Properties
	Example Language Utterance
	Overview of the Five Message Types
	Defining Rules
	Semantics and Syntax Details of the Components
	Futher Resources
	Syntax

	References and Furter Reading
	General Papers
	Doctrial Theses
	Undergraduate and Master’s Theses
	Platforms to start building team upon
	Education-related articles
	Machine Learning
	Decision Making
	Other supporting documents
	Team Descriptions

	Bibliography
	Index

